122 research outputs found

    Attenuation and damping of electromagnetic fields: Influence of inertia and displacement current

    Full text link
    New results for attenuation and damping of electromagnetic fields in rigid conducting media are derived under the conjugate influence of inertia due to charge carriers and displacement current. Inertial effects are described by a relaxation time for the current density in the realm of an extended Ohm's law. The classical notions of poor and good conductors are rediscussed on the basis of an effective electric conductivity, depending on both wave frequency and relaxation time. It is found that the attenuation for good conductors at high frequencies depends solely on the relaxation time. This means that the penetration depth saturates to a minimum value at sufficiently high frequencies. It is also shown that the actions of inertia and displacement current on damping of magnetic fields are opposite to each other. That could explain why the classical decay time of magnetic fields scales approximately as the diffusion time. At very small length scales, the decay time could be given either by the relaxation time or by a fraction of the diffusion time, depending whether inertia or displacement current, respectively, would prevail on magnetic diffusion.Comment: 21 pages, 1 figur

    First-Principle Homogenization Theory for Periodic Metamaterials

    Full text link
    We derive from first principles an accurate homogenized description of periodic metamaterials made of magnetodielectric inclusions, highlighting and overcoming relevant limitations of standard homogenization methods. We obtain closed-form expressions for the effective constitutive parameters, pointing out the relevance of inherent spatial dispersion effects, present even in the long-wavelength limit. Our results clarify the limitations of quasi-static homogenization models, restore the physical meaning of homogenized metamaterial parameters and outline the reasons behind magnetoelectric coupling effects that may arise also in the case of center-symmetric inclusions.Comment: 58 pages, 10 figures Phys. Rev. B, in press (2011

    Electrodynamics of balanced charges

    Get PDF
    In this work we modify the wave-corpuscle mechanics for elementary charges introduced by us recently. This modification is designed to better describe electromagnetic (EM) phenomena at atomic scales. It includes a modification of the concept of the classical EM field and a new model for the elementary charge which we call a balanced charge (b-charge). A b-charge does not interact with itself electromagnetically, and every b-charge possesses its own elementary EM field. The EM energy is naturally partitioned as the interaction energy between pairs of different b-charges. We construct EM theory of b-charges (BEM) based on a relativistic Lagrangian with the following properties: (i) b-charges interact only through their elementary EM potentials and fields; (ii) the field equations for the elementary EM fields are exactly the Maxwell equations with proper currents; (iii) a free charge moves uniformly preserving up to the Lorentz contraction its shape; (iv) the Newton equations with the Lorentz forces hold approximately when charges are well separated and move with non-relativistic velocities. The BEM theory can be characterized as neoclassical one which covers the macroscopic as well as the atomic spatial scales, it describes EM phenomena at atomic scale differently than the classical EM theory. It yields in macroscopic regimes the Newton equations with Lorentz forces for centers of well separated charges moving with nonrelativistic velocities. Applied to atomic scales it yields a hydrogen atom model with a frequency spectrum matching the same for the Schrodinger model with any desired accuracy.Comment: Manuscript was edited to improve the exposition and to remove noticed typo

    Theory of Supercoupling, Squeezing Wave Energy, and Field Confinement in Narrow Channels and Tight Bends Using Epsilon-Near-Zero Metamaterials

    Get PDF
    In this work, we investigate the detailed theory of the supercoupling, anomalous tunneling effect, and field confinement originally identified in [M. Silveirinha, N. Engheta, Phys. Rev. Lett. 97, 157403, (2006)], where we demonstrated the possibility of using materials with permittivity near zero to drastically improve the transmission of electromagnetic energy through a narrow irregular channel with very subwavelength transverse cross-section. Here, we present additional physical insights, describe new applications of the tunneling effect in relevant waveguide scenarios (e.g., the "perfect" or "super" waveguide coupling), study the effect of metal losses in the metallic walls, and the possibility of using epsilon-near zero materials to confine energy in a subwavelength cavity with gigantic field enhancement. In addition, we systematically study the propagation of electromagnetic waves through narrow channels filled with anisotropic epsilon-near zero materials. It is demonstrated that these materials may have interesting potentials, and that for some particular geometries the reflectivity of the channel is independent of the specific dimensions or parameters of epsilon-near zero transition. We also describe several realistic metamaterial implementations of the studied problems, based on standard metallic waveguides, microstrip line configurations, and wire media.Comment: under revie

    Quantized Roentgen Effect in Bose-Einstein Condensates

    Full text link
    A classical dielectric moving in a charged capacitor can create a magnetic field (Roentgen effect). A quantum dielectric, however, will not produce a magnetization, except at vortices. The magnetic field outside the quantum dielectric appears as the field of quantized monopoles

    High frequency diffraction of an electromagnetic plane wave by an imperfectly conducting rectangular cylinder

    Get PDF
    Copyright @ 2011 IEEEWe shall consider the the problem of determining the scattered far wave field produced when a plane E-polarized wave is incident on an imperfectly conducting rectangular cylinder. By using the the uniform asymptotic solution for the problem of the diffraction of a plane wave by a right-angled impedance wedge, in conjunction with Keller's method, the a high frequency far field solution to the problem is given

    Differential Form Valued Forms and Distributional Electromagnetic Sources

    Full text link
    Properties of a fundamental double-form of bi-degree (p,p)(p,p) for p0p\ge 0 are reviewed in order to establish a distributional framework for analysing equations of the form ΔΦ+λ2Φ=S\Delta \Phi + \lambda^2 \Phi = {\cal S} where Δ\Delta is the Hodge-de Rham operator on pp-forms Φ \Phi on R3{\bf R}^3. Particular attention is devoted to singular distributional solutions that arise when the source S {\cal S} is a singular pp-form distribution. A constructive approach to Dirac distributions on (moving) submanifolds embedded in R3{\bf R}^3 is developed in terms of (Leray) forms generated by the geometry of the embedding. This framework offers a useful tool in electromagnetic modeling where the possibly time dependent sources of certain physical attributes, such as electric charge, electric current and polarization or magnetization, are concentrated on localized regions in space.Comment: 40 page

    On the derivative of the associated Legendre function of the first kind of integer order with respect to its degree

    Get PDF
    In our recent works [R. Szmytkowski, J. Phys. A 39 (2006) 15147; corrigendum: 40 (2007) 7819; addendum: 40 (2007) 14887], we have investigated the derivative of the Legendre function of the first kind, Pν(z)P_{\nu}(z), with respect to its degree ν\nu. In the present work, we extend these studies and construct several representations of the derivative of the associated Legendre function of the first kind, Pν±m(z)P_{\nu}^{\pm m}(z), with respect to the degree ν\nu, for mNm\in\mathbb{N}. At first, we establish several contour-integral representations of Pν±m(z)/ν\partial P_{\nu}^{\pm m}(z)/\partial\nu. They are then used to derive Rodrigues-type formulas for [Pν±m(z)/ν]ν=n[\partial P_{\nu}^{\pm m}(z)/\partial\nu]_{\nu=n} with nNn\in\mathbb{N}. Next, some closed-form expressions for [Pν±m(z)/ν]ν=n[\partial P_{\nu}^{\pm m}(z)/\partial\nu]_{\nu=n} are obtained. These results are applied to find several representations, both explicit and of the Rodrigues type, for the associated Legendre function of the second kind of integer degree and order, Qn±m(z)Q_{n}^{\pm m}(z); the explicit representations are suitable for use for numerical purposes in various regions of the complex zz-plane. Finally, the derivatives [2Pνm(z)/ν2]ν=n[\partial^{2}P_{\nu}^{m}(z)/\partial\nu^{2}]_{\nu=n}, [Qνm(z)/ν]ν=n[\partial Q_{\nu}^{m}(z)/\partial\nu]_{\nu=n} and [Qνm(z)/ν]ν=n1[\partial Q_{\nu}^{m}(z)/\partial\nu]_{\nu=-n-1}, all with m>nm>n, are evaluated in terms of [Pνm(±z)/ν]ν=n[\partial P_{\nu}^{-m}(\pm z)/\partial\nu]_{\nu=n}.Comment: LateX, 40 pages, 1 figure, extensive referencin

    Platelets of patients with chronic kidney disease demonstrate deficient platelet reactivity in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In patients with chronic kidney disease studies focusing on platelet function and properties often are non-conclusive whereas only few studies use functional platelet tests. In this study we evaluated a recently developed functional flow cytometry based assay for the analysis of platelet function in chronic kidney disease.</p> <p>Methods</p> <p>Platelet reactivity was measured using flow cytometric analysis. Platelets in whole blood were triggered with different concentrations of agonists (TRAP, ADP, CRP). Platelet activation was quantified with staining for P-selectin, measuring the mean fluorescence intensity. Area under the curve and the concentration of half-maximal response were determined.</p> <p>Results</p> <p>We studied 23 patients with chronic kidney disease (9 patients with cardiorenal failure and 14 patients with end stage renal disease) and 19 healthy controls. Expression of P-selectin on the platelet surface measured as mean fluorescence intensity was significantly less in chronic kidney disease patients compared to controls after maximal stimulation with TRAP (9.7 (7.9-10.8) vs. 11.4 (9.2-12.2), P = 0.032), ADP (1.6 (1.2-2.1) vs. 2.6 (1.9-3.5), P = 0.002) and CRP (9.2 (8.5-10.8) vs. 11.5 (9.5-12.9), P = 0.004). Also the area under the curve was significantly different. There was no significant difference in half-maximal response between both groups.</p> <p>Conclusion</p> <p>In this study we found that patients with chronic kidney disease show reduced platelet reactivity in response of ADP, TRAP and CRP compared to controls. These results contribute to our understanding of the aberrant platelet function observed in patients with chronic kidney disease and emphasize the significance of using functional whole blood platelet activation assays.</p

    Optics of Nonuniformly Moving Media

    Full text link
    A moving dielectric appears to light as an effective gravitational field. At low flow velocities the dielectric acts on light in the same way as a magnetic field acts on a charged matter wave. We develop in detail the geometrical optics of moving dispersionless media. We derive a Hamiltonian and a Lagrangian to describe ray propagation. We elucidate how the gravitational and the magnetic model of light propagation are related to each other. Finally, we study light propagation around a vortex flow. The vortex shows an optical Aharonov--Bohm effect at large distances from the core, and, at shorter ranges, the vortex may resemble an optical black hole.Comment: Physical Review A (submitted
    corecore