6,083 research outputs found
Surface Impedance Determination via Numerical Resolution of the Inverse Helmholtz Problem
Assigning boundary conditions, such as acoustic impedance, to the frequency
domain thermoviscous wave equations (TWE), derived from the linearized
Navier-Stokes equations (LNSE) poses a Helmholtz problem, solution to which
yields a discrete set of complex eigenfunctions and eigenvalue pairs. The
proposed method -- the inverse Helmholtz solver (iHS) -- reverses such
procedure by returning the value of acoustic impedance at one or more unknown
impedance boundaries (IBs) of a given domain, via spatial integration of the
TWE for a given real-valued frequency with assigned conditions on other
boundaries. The iHS procedure is applied to a second-order spatial
discretization of the TWEs on an unstructured staggered grid arrangement. Only
the momentum equation is extended to the center of each IB face where pressure
and velocity components are co-located and treated as unknowns. The iHS is
finally closed via assignment of the surface gradient of pressure phase over
the IBs, corresponding to assigning the shape of the acoustic waveform at the
IB. The iHS procedure can be carried out independently for different
frequencies, making it embarrassingly parallel, and able to return the complete
broadband complex impedance distribution at the IBs in any desired frequency
range to arbitrary numerical precision. The iHS approach is first validated
against Rott's theory for viscous rectangular and circular ducts. The impedance
of a toy porous cavity with a complex geometry is then reconstructed and
validated with companion fully compressible unstructured Navier-Stokes
simulations resolving the cavity geometry. Verification against one-dimensional
impedance test tube calculations based on time-domain impedance boundary
conditions (TDIBC) is also carried out. Finally, results from a preliminary
analysis of a thermoacoustically unstable cavity are presented.Comment: As submitted to AIAA Aviation 201
Structure And Properties of Nanoparticles Formed under Conditions of Wire Electrical Explosion
Structure and properties of nanoparticles formed under conditions of wire
electrical explosion were studied. It was shown that the state of WEE power
particles can be characterized as a metastable state. It leads to an increased
stability of nanopowders at normal temperatures and an increased reactivity
during heating, which is revealed in the form of threshold phenomena.Comment: Submitted on behalf of TIMA Editions
(http://irevues.inist.fr/tima-editions
Condensation of Silica Nanoparticles on a Phospholipid Membrane
The structure of the transient layer at the interface between air and the
aqueous solution of silica nanoparticles with the size distribution of
particles that has been determined from small-angle scattering has been studied
by the X-ray reflectometry method. The reconstructed depth profile of the
polarizability of the substance indicates the presence of a structure
consisting of several layers of nanoparticles with the thickness that is more
than twice as large as the thickness of the previously described structure. The
adsorption of 1,2-distearoyl-sn-glycero-3-phosphocholine molecules at the
hydrosol/air interface is accompanied by the condensation of anion silica
nanoparticles at the interface. This phenomenon can be qualitatively explained
by the formation of the positive surface potential due to the penetration and
accumulation of Na+ cations in the phospholipid membrane.Comment: 7 pages, 5 figure
Photon splitting in atomic fields
Photon splitting due to vacuum polarization in the electric field of an atom
is considered. We survey different theoretical approaches to the description of
this nonlinear QED process and several attempts of its experimental
observation. We present the results of the lowest-order perturbation theory as
well as those obtained within the quasiclassical approximation being exact in
the external field strength. The experiment where photon splitting was really
observed for the first time is discussed in details. The results of this
experiment are compared with recent theoretical estimations.Comment: 45 pages, 24 figure
Noise thermometry applied to thermoelectric measurements in InAs nanowires
We apply noise thermometry to characterize charge and thermoelectric
transport in single InAs nanowires (NWs) at a bath temperature of 4.2 K. Shot
noise measurements identify elastic diffusive transport in our NWs with
negligible electron-phonon interaction. This enables us to set up a measurement
of the diffusion thermopower. Unlike in previous approaches, we make use of a
primary electronic noise thermometry to calibrate a thermal bias across the NW.
In particular, this enables us to apply a contact heating scheme, which is much
more efficient in creating the thermal bias as compared to conventional
substrate heating. The measured thermoelectric Seebeck coefficient exhibits
strong mesoscopic fluctuations in dependence on the back-gate voltage that is
used to tune the NW carrier density. We analyze the transport and
thermoelectric data in terms of approximate Mott's thermopower relation and to
evaluate a gate-voltage to Fermi energy conversion factor
Local noise in a diffusive conductor
The control and measurement of local non-equilibrium configurations is of
utmost importance in applications on energy harvesting, thermoelectrics and
heat management in nano-electronics. This challenging task can be achieved with
the help of various local probes, prominent examples including superconducting
or quantum dot based tunnel junctions, classical and quantum resistors, and
Raman thermography. Beyond time-averaged properties, valuable information can
also be gained from spontaneous fluctuations of current (noise). From these
perspective, however, a fundamental constraint is set by current conservation,
which makes noise a characteristic of the whole conductor, rather than some
part of it. Here we demonstrate how to remove this obstacle and pick up a local
noise temperature of a current biased diffusive conductor with the help of a
miniature noise probe. This approach is virtually noninvasive and extends
primary local measurements towards strongly non-equilibrium regimes.Comment: minor revision, accepted in Scientific Report
- …