688 research outputs found

    Thermodynamic cost of reversible computing

    Full text link
    Since reversible computing requires preservation of all information throughout the entire computational process, this implies that all errors that appear as a result of the interaction of the information-carrying system with uncontrolled degrees of freedom must be corrected. But this can only be done at the expense of an increase in the entropy of the environment corresponding to the dissipation, in the form of heat, of the ``noisy'' part of the system's energy. This paper gives an expression of that energy in terms of the effective noise temperature, and analyzes the relationship between the energy dissipation rate and the rate of computation. Finally, a generalized Clausius principle based on the concept of effective temperature is presented.Comment: 5 pages; added two paragraphs and fixed a number of typo

    The fundamental limit on the rate of quantum dynamics: the unified bound is tight

    Full text link
    The question of how fast a quantum state can evolve has attracted a considerable attention in connection with quantum measurement, metrology, and information processing. Since only orthogonal states can be unambiguously distinguished, a transition from a state to an orthogonal one can be taken as the elementary step of a computational process. Therefore, such a transition can be interpreted as the operation of "flipping a qubit", and the number of orthogonal states visited by the system per unit time can be viewed as the maximum rate of operation. A lower bound on the orthogonalization time, based on the energy spread DeltaE, was found by Mandelstam and Tamm. Another bound, based on the average energy E, was established by Margolus and Levitin. The bounds coincide, and can be exactly attained by certain initial states if DeltaE=E; however, the problem remained open of what the situation is otherwise. Here we consider the unified bound that takes into account both DeltaE and E. We prove that there exist no initial states that saturate the bound if DeltaE is not equal to E. However, the bound remains tight: for any given values of DeltaE and E, there exists a one-parameter family of initial states that can approach the bound arbitrarily close when the parameter approaches its limit value. The relation between the largest energy level, the average energy, and the orthogonalization time is also discussed. These results establish the fundamental quantum limit on the rate of operation of any information-processing system.Comment: 4 pages 1 PS figure Late

    Enhanced Resolution of Lossy Interferometry by Coherent Amplification of Single Photons

    Full text link
    In the quantum sensing context most of the efforts to design novel quantum techniques of sensing have been constrained to idealized, noise-free scenarios, in which effects of environmental disturbances could be neglected. In this work, we propose to exploit optical parametric amplification to boost interferometry sensitivity in the presence of losses in a minimally invasive scenario. By performing the amplification process on the microscopic probe after the interaction with the sample, we can beat the losses detrimental effect on the phase measurement which affects the single-photon state after its interaction with the sample, and thus improve the achievable sensitivity.Comment: 4 + 3 pages, 3 + 5 figure

    Quantum to classical transition via fuzzy measurements on high gain spontaneous parametric down-conversion

    Full text link
    We consider the high gain spontaneous parametric down-conversion in a non collinear geometry as a paradigmatic scenario to investigate the quantum-to-classical transition by increasing the pump power, that is, the average number of generated photons. The possibility of observing quantum correlations in such macroscopic quantum system through dichotomic measurement will be analyzed by addressing two different measurement schemes, based on different dichotomization processes. More specifically, we will investigate the persistence of non-locality in an increasing size n/2-spin singlet state by studying the change in the correlations form as nn increases, both in the ideal case and in presence of losses. We observe a fast decrease in the amount of Bell's inequality violation for increasing system size. This theoretical analysis is supported by the experimental observation of macro-macro correlations with an average number of photons of about 10^3. Our results enlighten the practical extreme difficulty of observing non-locality by performing such a dichotomic fuzzy measurement.Comment: 15 pages, 18 figure

    The biochemical basis of interactions between Glucocerebrosidase and alpha‐synuclein in GBA1 mutation carriers

    Get PDF
    The discovery of genes involved in familial as well as sporadic forms of Parkinson disease (PD) constitutes an important milestone in understanding this disorder's pathophysiology and potential treatment. Among these genes, GBA1 is one of the most common and well-studied, but it is still unclear how mutations in GBA1 translate into an increased risk for developing PD. In this review, we provide an overview of the biochemical and structural relationship between GBA1 and PD to help understand the recent advances in the development of PD therapies intended to target this pathway

    Modulational instability and wave amplification in finite water depth

    Get PDF
    The modulational instability of a uniform wave train to side band perturbations is one of the most plausible mechanisms for the generation of rogue waves in deep water. In a condition of finite water depth, however, the interaction with the sea floor generates a wave-induced current that subtracts energy from the wave field and consequently attenuates the instability mechanism. As a result, a plane wave remains stable under the influence of collinear side bands for relative depths <i>kh</i> &leq; 1.36 (where <i>k</i> is the wavenumber of the plane wave and <i>h</i> is the water depth), but it can still destabilise due to oblique perturbations. Using direct numerical simulations of the Euler equations, it is here demonstrated that oblique side bands are capable of triggering modulational instability and eventually leading to the formation of rogue waves also for <i>kh</i> &leq; 1.36. Results, nonetheless, indicate that modulational instability cannot sustain a substantial wave growth for <i>kh</i> < 0.8

    Three-Qubit Gate Realization Using Single Quantum Particle

    Get PDF
    Using virtual spin formalism it is shown that a quantum particle with eight energy levels can store three qubits. The formalism allows to realize a universal set of quantum gates. Feasible formalism implementation is suggested which uses nuclear spin-7/2 as a storage medium and radio frequency pulses as the gates. One pulse realization of all universal gates has been found, including three-qubit Toffoli gate.Comment: LaTeX, 6 pages, no figures; Submitted to "Pis'ma v Zh. Eksp. Teor. Fiz.

    Current Trends in Urinary Diversion in Men

    Get PDF
    Prior to the introduction of the ileal conduit more than four decades ago, the options for urinary diversion after cystectomy were extremely limited. Direct cutaneous anastomoses of the collecting system (cutaneous pyelostomies, ureterostomies) offered patients a short-term diversion, but the benefits were outweighed by significant complications: recession or stenosis of the stoma. The first choice of diversion was the ureterosigmoidostomy with or without antireflux technique. Then it fell in popularity and was replaced with continent/non-continent uretero-ileo-cutaneous diversions. Only in the last years the continent orthotopic neobladder has been widely employed as first procedure choice. At present, patients can be offered a non-continent cutaneous diversion, a continent cutaneous diversion or an orthotopic neobladder urinary reconstructio
    • 

    corecore