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Abstract. The modulational instability of a uniform wave mechanism for the formation of rogue waves in deep wa-
train to side band perturbations is one of the most plausiblaer (Zakharov and Ostrovsk2009 Osborne201Q Onorato
mechanisms for the generation of rogue waves in deep wateet al, 2013k Kharif et al, 2009, i.e. kgh — oo, wherekg is

In a condition of finite water depth, however, the interaction the wavenumber of the plane wave ani the water depth.
with the sea floor generates a wave-induced current that sutBasically, this is a generalisation of tlBenjamin and Feir
tracts energy from the wave field and consequently attenuate 967 or modulational instability{akharoy 1968 and can

the instability mechanism. As a result, a plane wave remainde described by the nonlinear Schrodinger (NLS) equation
stable under the influence of collinear side bands for relativg(Zakharoy 1968, which is derived from the Euler equations
depthskh < 1.36 (wherek is the wavenumber of the plane by assuming that waves are weakly nonlinear (i.e. the wave
wave and is the water depth), but it can still destabilise due steepness = kpap < 1, whereag is the amplitude of the car-

to oblique perturbations. Using direct numerical simulationsrier wave) and have narrow bandwidthX/ ko <« 1, where

of the Euler equations, it is here demonstrated that obliqueAk is the modulation wavenumber). For a propagation in one
side bands are capable of triggering modulational instabil-dimension, a linear stability analysis of the NLS equation in-
ity and eventually leading to the formation of rogue wavesdicates that unstable disturbances can lead to an exponential
also forkh < 1.36. Results, nonetheless, indicate that modu-growth of a small-amplitude modulation and hence to rogue
lational instability cannot sustain a substantial wave growthwaves (see e.@sborne2010.

for kh < 0.8. If two-dimensional propagation is allowed, a+2l form

of the NLS equation indicates that unstable disturbances are
not only limited to the ones propagating collinearly with the

) plane wave, but also include modes that propagate at an an-
1 Introduction gle with respect to the carrier. In this regard, it is important to

mention that the region of instability is stretched over a nar-
The occurrence of extreme waves (also known as freak ofq domain forming an angle of about 35 with the mean

rogue waves) has an important role in many branches of,,ve direction towards high wavenumbers (see the instabil-
physics and engineering (see, for exampleabchoub etal. i giagram in Fig. 1 ofGramstad and Trulse@011 for ex-
2011, Onor.ato-et al. 20133 b; Chalikoy, 2009 Babanin 5 e). Although the most unstable modes remain collinear
et al, 2011 Bitner-Gregersen and Toffoli2012 Toffoli i, \yater of infinite depth, oblique perturbations tend to dom-
et al, 2008l Solli et al, 2007 Kibler et al, 2010 Bailung  jnate the modulational instability for conditions of arbitrary
et al, 2Q1l among many others). Apart from a linear su- |\ ~iar depths whekoh < ¢~1 (Trulsen and Dysthel998.
perposition of wave modes and the effect of currents Onryq s also confirmed by laboratory experiments in a rel-

waves (caustic theory), the modulational instability Ofapla”eatively wide long wave flumeTtulsen et al. 1999, where
wave to side band perturbations remains the most plausible '
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a plane wave without any initial seeding of unstable modesLaplace equation everywhere in the fluid can be defined. For

was observed to transfer energy towards a lower oblique sidéhe present study, a constant water depth is also assumed. At

band (see alsBabanin et a].2011;, Ribal et al, 2013. Di- the bottom £ = —h) the boundary condition is such that the

rect numerical simulations of thet2l NLS equation, further-  vertical velocity is zero (i.ep, |, = 0). At the free surface =

more, substantiate that not only can oblique disturbances susH(x, y, t), the kinematic and dynamic boundary conditions

tain modulational instability, but they are also capable of trig- are satisfied for the free surface elevation and the velocity

gering the formation of rogue wave®gborne et al.200Q potential at the free surfage(x, y, 1) = ¢ (x, y, n(x, y,1),1).

Slunyaev et a).2002. Using the free surface variables these conditions can be writ-
For conditions of more finite water depthigh ~ 0(1), ten as follows (see e.gakharoy 1968:

wave-induced mean flow gradually subtracts energy from the 1 1

wave fields with a concurrent weakening of the modulationaly, 4 ¢, 4 = (1//)? + 1//y2) _ w2 (1+ n? + ﬁf) —0, 1)

instability mechanism (see e.§lunyaev et a).2002 Ben- 2 2

jamin, 1967 Whitham 1974 Janssen and Onorat@007 0o+ Yy + Yy — W (1+ n? + ,75) -0, (2

McLean 1982 Benney and Roske$969. As a result, there

is a reduction in the region of instability (see Fig. 13nam-  where the subscripts indicate the partial derivatives, and

stad and Trulser2011), leading to a complete stabilisation of w (x, y,r) = .|, represents the vertical velocity at the free

collinear modes at a critical relative water depgth = 1.36 surface.

(Benjamin 1967 Janssen and Onorat?007). Beyond this The temporal evolution of the surface elevation can be es-

threshold, nevertheless, oblique perturbations still remain untimated directly from the system of Eqd)@nd @). To this

stable and numerical simulations of the-2 NLS equation,  end, a higher order spectral method (HOSM), which was in-

in this respect, confirm that such modes can still trigger verydependently proposed Biyest et al.(1987 and Dommer-

large amplitude wavesS{unyaev et a).2002 Didenkulova  muth and Yug1987), is applied. Note, however, that an in-

et al, 2013. Furthermore, direct numerical simulations of teresting comparison between these two approach€sain

the Euler equation also indicate that directional componentsnond et al(2006 reveals that the formulation iBommer-

can sustain the formation of extreme waves in random di-muth and Yuq]_98n is less consistent than the one proposed

rectional wave fields in water of finite depth, leading to sub- by West et al.(1987. Therefore, only the latter is applied

stantial deviations from standard second-order based statigyerein.

tics (Toffoli et al., 2009). HOSM is based on a pseudo-spectral approach that uses
A systematic analysis of the effect of oblique perturbationsa series expansion in the wave steepness the velocity

on the nonlinear dynamics of a plane wave has not been afotential of the form

tempted yet and hence the transition between infinite and fi-

nite depths still remains not completely clear. It is reasonable M

to expect, moreover, that the region of instability would even-¢ (%, ¥, 2,0 = Y _ ¢ (x, y,2,1), ®)

tually vanish for sufficiently shallow water depths. Therefore, m=1

there should exist a lower limit beyond which wave ampli- . eacky™ is a quantity of ordeD (¢™). In Eq. @), M

tude grow.th would cease. In the pre;ent paper, the nonllnPepresent the order of nonlinearity that is considered. A Tay-
ear evolution of a plane wave in relative water depth grad-

I a0 from d toidh o shall lor expansion around = 0 is then performed for eagh™
ually varying from deep wate 6_ —> o0) to shallow Wa"  term and combined with the above expansion for the poten-
ter (koh — 0) conditions and for different degrees of nonlin-

N g~ . _tial. After collecting all terms at each order in wave steep-
earity (i.e. wave steepness) is discussed. The problem is ap-

proached numerically by solving the Euler equations for the%ess’ we obtain the following system:
wave motion with a higher order spectral method (HSOM) oD (x,y,2=0,0) = ¥(x, y,1);
(West et al. 1987 Dommermuth and Yuel987). In the next

two sections, a brief description of the model and its initial- ¢ (x,y,7=0,1) =

isation is presented. In Sedt.the temporal evolution of the
wave field is discussed; nonlinear energy transfer from the
carrier to the unstable side bands and wave amplitude growth

are presented. In the final section, some concluding remark
orm

(4)
—1pk gk _
o Py, 2=0,0)

=2,3,..., M. FollowingWest et al(1987), W (x, y, t)

are given. can also be similarly expanded in series of terms of order
o(E™):
2 The model M
Wiy, =Y W™, y.0), (5)
Assuming an irrotational, inviscid and incompressible fluid m=1

flow, a velocity potential¢(x,y,z,t) that satisfies the
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Collinear case Directional case Collinear case Directional case
kh = o0 kh = kh =1.36 kh =1.36
A, Ay A,
Akx

Fig. 1. Instability region and location of side bands foh — Fig. 2. Instability region and location of side bands fbh =
oo: collinear disturbances (left panel); oblique disturbances (right1.36: collinear disturbances (left panel); oblique disturbances (right
panel). panel).
where the termd/ ™) are computed from thg¢™ terms: for details). Note, however, that no additional terms were in-

mel & okl cluded to take into account wave dissipation.
W (x,y,1) = Z’?_ . 1¢(m—k)(x’y’zzo’t). (6) A concise review o_f HOSM can be found manaka_

= k! 9zt (20013, while applications of this method to the nonlin-

ear dynamics of surface gravity waves can be found in e.g.
For the case of a rectangular domain in space with dimenMori and Yasud42002), Ducrozet et al(2007), Toffoli et al.
sionsLy andL, in x andy and assuming periodicity in both (20083 b, 20103 b), and Xiao et al. (2013, among oth-
directions for the wave field, we can use the following ex- ers. Note that other numerical methods have also been pro-
pression based on a double Fourier series for e@dthterm posed byAnnenkov and Shrirg2001) and Clamond and

in finite water depth (see e.Bean and Dalrymple2000: Grue (2007). A comparative analysis between the perfor-
- mance of the HOSM and other numerical approaches can be
¢(x,y.2,0) = found inClamond et al(2006).
(7
(m) costkx.i (z+M)]
S kici Cosl‘(l’{kih) cos(wt — ki - x),

3 Initial conditions

with wavenumbers ki ; = ki ;| and ki, = (ky, ky) =

2nk 2vl\- . _ Jop The model simulates the temporal evolution of an initial
(LX ’ L>')' = slkiil 1s the angular frequency. The surfacen(x, y,t =0) and the concurrent velocity poten-
time-dependent modal coeﬁicierﬁg) (t) of the potentials  tial v (x, y, 7 = 0) with periodic boundaries. For the present
#™ can be computed from Eq. (4) by using a two- study, the input surface and potential were defined by su-
dimensional (fast) Fourier transform when the free surfaceperimposing a plane (carrier) wave and four infinitesimal
elevation and the free surface velocity potentials are given agsmall-amplitude) unstable side band perturbations. For con-
input. venience, we defined the carrier as a monochromatic wave

Here, we considered both a third- and fifth-order expan-with wavelengthl.o = 156m (wave periodliy = 10s in deep

sion (i.e. M =3 and 5). The former allows the inclusion water) and propagating along thedirection. Several val-
of four wave interactions (seBanaka 2001a b), which is ues of wave amplitude were applied to vary the wave steep-
directly responsible for modulational instability (class-I in- ness and hence the degree of nonlinearity. Overall, wave
stability). The latter also includes higher order interactions,fields with the following steepness were uségo = 0.1,
which are responsible for class-Il instability and concurrently 0.12 and 014, whereqag is the amplitude of the plane wave.

for crescent waves (see, for exampWgLean 1982 Kris- Each configuration was then tested within a wide range of

tiansen et a).2005 Francius and Kharjf2006). water depths, varying from infinite to finite conditions (i.e.
After evaluating the vertical velocity at the free surface at 0.5 < koh < o).

order M, the free surface velocity potentig(x, y,?) and The four small-amplitude perturbations were carefully se-

the surface elevation(x, y, ) can be integrated in time from lected within the unstable region of the instability diagram
Egs. () and @). The time integration is then performed by and with amplitude equivalent to 0.05 %, the one of the car-
means of a fourth-order Runge—Kutta method with a con-rier wave. The modulational wavenumbexsk, and AK,
stant time step. All aliasing errors generated in the nonlin-were defined such that the wave packets contain five waves
ear terms are removed (s@est et al. 1987 Tanaka2001h under the modulation along thedirectional of propagation.
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Fig. 3. Temporal evolution of the normalised maximum amplitude: plane wave seeded with collinear perturbations (dashed line); plane
wave seeded with oblique perturbations (solid line). These results have been summarised4nT-&gel 6. (l.e: the maximum value of
normalised maximum amplitudes shown(@) (kg = oo andkgag = 0.14), for oblique perturbations (solid line), corresponds to the given
value ofkh =inf in Fig. 6 for the oblique case.)

Overall, two lower (i.e.[—AK,, AK,], [-AK,,—AK,]) As a consequence of wave—wave interactions, the initial
and two upper (i.fAK,, AK,],[-AK,,—AK,]) unstable  configuration is expected to evolve in time, producing an en-
modes were defined with K, /AK, ~ 0.7 for kh > 1.36, ergy transfer from the carrier wave to the unstable side bands,
AK,/ Ko~ 0.20 andAK,/ Ko~ 0.14. A schematic repre- with the lower disturbances growing faster than the upper
sentation showing the instability diagram and the location ofones (see e.¢.0 and Mej 1987, Tulin and Wasedd 999. In
the selected modes is presented in Figand2 for kh — oo a condition of deep water, this energy transfer is followed by
andkh = 1.36, respectively. a growth of the modulation that leads to a substantial increase
The effect of collinear perturbations was also investigatedof the wave amplitude. This amplification is triggered under
by imposingA K, = 0 (see left panels in Figd.and2). Note, the influence of both collinear and oblique disturbances. The
however, that the resulting lower and upper collinear pertur-process, however, seems to occur more rapidly under the in-
bations have an amplitude that is equivalent to 0.1 % of thefluence of the former (see Fi@a, b and c). It is interest-
carrier, i.e. twice the amplitude of an oblique side band. ing to note, in this respect, that collinear disturbances also
The dimension of the physical domain was defined by ainduce a recurrence in the phenomenon with a sequence of
mesh of 256« 256 points. The resolution in both dimen- modulation and demodulation of the input surface (cf., for
sions wasAx = Ay = 6.24m so that the domain includes exampleRibal et al, 2013. When seeded with oblique side
10 wavelengths and hence a dominant wave is discretisetband perturbations, on the other hand, no significant evidence
by 25 grid points. The time step was chosen equahte= of recurrence can be detected. Despite some oscillations in
To/150=0.067s. On the whole, the simulations estimated the value of the amplitude, however, there is evidence for a
the evolution of the surface and velocity potential over a timerobust monotonic growth of the wave amplitudes up to two
frame of 350 dominant periods. times the initial value.
With the reduction in relative water depth, the region of
collinear unstable modes gradually shrinks with a concur-
4 Temporal evolution of wave amplitude rent attenuation of the wave amplitude growth. Eventually,

for the critical relative depttgh = 1.36, collinear modula-

At each_tlme step, the maximum value of the wave amp"tUdetions become completely stable. As a consequence, energy
was estimated from the resulting output surface. Asumman{ransfer to collinear side bands no longer occurs and con-

of tlhe tglg]por:al evol(ljm%n dOf t_he_ maxfm;]um amphtud%%sé nor- currently amplitude growth ceases, regardless of the value of
malised by the standard deviation of the wave enve steepness of the initial surfaces (see dashed line in3gig.

is presented in Fig for different relative depths and steep- e and f). Oblique modulations, nevertheless, still remain un-

ness. For simplicity only results that were obtained by aP-stable and grow at the expense of the plane wave. Note that

plying a fift_h-order_ expansion (.84 = 5) in the HOSM are first evidence of an energy transfer to oblique side bands can
presented in this figure.
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Fig. 4. Maximum wave amplification as a function of the relative Fig. 5. Maximum wave amplification as a function of the relative

water depth fokgag = 0.1, M =5. water depth fokgag = 0.12, M = 5.
3 ; ‘ ;

be found inTrulsen et al(1999, albeit for fairly deep water. . O o O
In the physical space, the growth of oblique perturbations re- ' O o ®)
sults in an amplification of the modulation, which roughly « 2t x X X 1
doubles its initial amplitude (see solid line in Figd, e and "W e)
f). It is also worth mentioning that the timescale for this am- x| % X x ]
plification remains comparable with the one observed in deep < 1t X ,
water, namely of the order of 100 wave periods. The process
speeds up slightly with the increase in the degree of nonlin- 051 X Collinear
earity (wave steepness) though. o ‘ ‘ ‘ ‘ ‘ ‘ Ooblique

Itis important to mention that the timescales are consistent 0.80 1.00 120 1.36 y r%AO 480 inf inf-—>

with the generation of rogue waves in the laboratory (see, in
this regard, a recent comparison between experimental datgig. 6. Maximum wave amplification as a function of the relative
and HOSM simulations iffoffoli et al., 2013. water depth fokgag = 0.14, M = 5.

Despite the fact that the region of instability keeps com-
pressing for further reductions of the relative water depth (see
e.g.Gramstad and Trulser2011), oblique unstable modes relatively shallow water conditions witkys as low as 4.
still sustain modulational instability and amplitude growth For kgh < 1.36, amplitude growth ceases completely under
for koh < 1.36. For the specific case bjh = 1 (see Fig3g, the influence of collinear side bands. Oblique perturbations,
h and i), however, the effect on the modulation attenuates noen the other hand, produce a substantially stronger amplifi-
tably. For a low steepneskyo = 0.1 for this example), par-  cation of the initial modulation already for deep water condi-
ticularly, wave amplitude does not depart significantly from tions. In contrast with the behaviour shown by a plane wave
the input condition. An increase in steepness seems, howeveseeded with collinear disturbances, the degree of amplifica-
to reactivate the mechanism, inducing a substantial wave antion reduces much more gradually, starting fréph < 48.
plification under the influence of oblique disturbances. It is Nevertheless, a notable wave amplification still withstands
remarkable, in this regard, that the modulation still doublesalso for kok < 1.36. It is worth mentioning, however, that
its initial amplitude for the largest value of steepness considthe modulation does not grow significantly for relative wa-
ered in this study (i.ekgag = 0.14). This result is consistent ter depthkgh < 0.8.
with previous simulations of the-2 1 NLS (Slunyaev et a. We remark that results presented so far were obtained us-
2002, which demonstrated that rogue waves can still be gening M =5 in the HOSM and hence nonlinear mechanisms
erated in water of finite depth (i.egh < 1.36), when a plane  other than modulational instability (class-I) were included in
wave is seeded by appropriate oblique side bands. the simulations. As class-Il instability becomes dominant for

In order to summarise the results of all simulations, theinitial wave trains of steepness as low as 0.12 (for example,
maximum wave amplitude (as normalised By/2) is pre-  Su and Greenl985 Fructus et al.2005, higher order non-
sented as a function of the relative water depth in Fg$. linear terms might, therefore, have played a role in the ob-
and®é. served wave growth, especially fogh = 1 (seeKristiansen

On the whole, it is interesting to note that collinear distur- et al, 2005 Francius and Kharjf2006. In order to ver-
bances sustain a substantial amplification of an initially smallify this conjecture, a comparison between simulations per-
amplitude modulation (up to twice the initial value) until formed withM =3 andM =5 is presented in Figr, for a

www.nat-hazards-earth-syst-sci.net/14/705/2014/ Nat. Hazards Earth Syst. Sci., 14, 7056% 2014
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wave steepnegga = 0.14. Results seem to indicate, in this

regard, that higher order terms (class-II instability) have in
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