39 research outputs found

    Fabrication and Applications of Micro/Nanostructured Devices for Tissue Engineering

    Get PDF
    Nanotechnology allows the realization of new materials and devices with basic structural unit in the range of 1–100 nm and characterized by gaining control at the atomic, molecular, and supramolecular level. Reducing the dimensions of a material into the nanoscale range usually results in the change of its physiochemical properties such as reactivity, crystallinity, and solubility. This review treats the convergence of last research news at the interface of nanostructured biomaterials and tissue engineering for emerging biomedical technologies such as scaffolding and tissue regeneration. The present review is organized into three main sections. The introduction concerns an overview of the increasing utility of nanostructured materials in the field of tissue engineering. It elucidates how nanotechnology, by working in the submicron length scale, assures the realization of a biocompatible interface that is able to reproduce the physiological cell–matrix interaction. The second, more technical section, concerns the design and fabrication of biocompatible surface characterized by micro- and submicroscale features, using microfabrication, nanolithography, and miscellaneous nanolithographic techniques. In the last part, we review the ongoing tissue engineering application of nanostructured materials and scaffolds in different fields such as neurology, cardiology, orthopedics, and skin tissue regeneration

    An Overview of Lipid Droplets in Cancer and Cancer Stem Cells

    Get PDF
    For decades, lipid droplets have been considered as the main cellular organelles involved in the fat storage, because of their lipid composition. However, in recent years, some new and totally unexpected roles have been discovered for them: (i) they are active sites for synthesis and storage of inflammatory mediators, and (ii) they are key players in cancer cells and tissues, especially in cancer stem cells. In this review, we summarize the main concepts related to the lipid droplet structure and function and their involvement in inflammatory and cancer processes

    ROS and Lipid Droplet accumulation induced by high glucose exposure in healthy colon and Colorectal Cancer Stem Cells

    Get PDF
    Lipid Droplets (LDs) are emerging as crucial players in colon cancer development and maintenance. Their expression has been associated with high tumorigenicity in Cancer Stem Cells (CSCs), so that they have been proposed as a new functional marker in Colorectal Cancer Stem Cells (CR-CSCs). They are also indirectly involved in the modulation of the tumor microenvironment through the production of pro-inflammatory molecules. There is growing evidence that a possible connection between metabolic alterations and malignant transformation exists, although the effects of nutrients, primarily glucose, on the CSC behavior are still mostly unexplored. Glucose is an essential fuel for cancer cells, and the connections with LDs in the healthy and CSC populations merit to be more deeply investigated. Here, we showed that a high glucose concentration activated the PI3K/AKT pathway and increased the expression of CD133 and CD44v6 CSC markers. Additionally, glucose was responsible for the increased amount of Reactive Oxygen Species (ROS) and LDs in both healthy and CR-CSC samples. We also investigated the gene modulations following the HG treatment and found out that the healthy cell gene profile was the most affected. Lastly, Atorvastatin, a lipid-lowering drug, induced the highest mortality on CR-CSCs without affecting the healthy counterpart

    Three-dimensionally two-photon lithography realized vascular grafts

    No full text
    Generation of artificial vascular grafts as blood vessel substitutes is a primary challenge in biomaterial and tissue-engineering research. Ideally, these grafts should be able to recapitulate physiological and mechanical properties of natural vessels and guide the assembly of an endothelial cell lining to ensure hemo-compatibility. In this paper, we advance on this challenging task by designing and fabricating 3D vessel analogues by two-photon laser lithography using a synthetic photoresist. These scaffolds guarantee human endothelial cell adhesion and proliferation, and proper elastic behavior to withstand the pressure exerted by blood flow

    Cells preferentially grow on rough substrates

    No full text
    Substrate nanotopography affects cell adhesion and proliferation and is fundamental to the rational design of bio-adhesives, to tissue engineering and to the development of assays for in-vitro screening. Cell behavior on rough substrates is still elusive, and the results presented in the open literature remain controversial. Here, the proliferation of cells on electrochemically etched silicon substrates with different roughness and nearly similar surface energy was studied over three days with confocal and atomic force microscopy. The surface profile of the substrates is a self-affine fractal with a roughness Ra growing with the etching time from2 to 100 nm and a fractal dimension D ranging between about 2 (nominally flat surface) and 2.6. For four cell types, the number of adhering cells and their proliferation rates exhibited a maximum on moderately rough (Ra 10-45 nm) nearly Brownian (D 2.5) substrates. The observed cell behavior was satisfactorily interpreted within the theory of adhesion to randomly rough solids. These findings demonstrated the importance of nanogeometry in cell stable adhesion and growth, suggesting that moderately rough substrates with large fractal dimension could selectively boost cell proliferation
    corecore