9,550 research outputs found

    What is Causing This Man\u27s Rectal Pain and Urinary Retention?

    Get PDF
    Case: A 23-year-old man presented to an urgent care office with a 2-week history of rectal pain and scant rectal bleeding. In the few days leading up to his presentation, he also had a fever of 101° F (38.3° C), inguinal lymphadenopathy, and urinary retention

    Time-resolved carrier dynamics and electron-phonon coupling strength in proximized weak ferromagnet-superconductor nanobilayers

    Get PDF
    We present our femtosecond optical pump-probe studies of proximized ferromagnet-superconductor nanobilayers. The weak ferromagnetic nature of a thin NiCu film makes it possible to observe the dynamics of the nonequilibrium carriers through the near-surface optical reflectivity change measurements. The subpicosecond biexponential reflectivity decay has been identified as electron-phonon Debye and acoustic phonon relaxation times, and the decay of Debye phonons versus temperature dependence was used to evaluate the electron-phonon coupling constants for both the pure Nb and proximized Nb/NiCu heterostructures down to low temperatures. We have also demonstrated that the NiCu overlay on top of Nb dramatically reduced the slow, bolometric component of the photoresponse component, making such bilayers attractive for future radiation detector applications

    Conjunctive query inseparability of OWL 2 QL TBoxes

    Get PDF
    The OWL2 profile OWL 2 QL, based on the DL-Lite family of description logics, is emerging as a major language for developing new ontologies and approximating the existing ones. Its main application is ontology based data access, where ontologies are used to provide background knowledge for answering queries over data. We investigate the corresponding notion of query inseparability (or equivalence) for OWL 2 QL ontologies and show that deciding query inseparability is PSpace-hard and in ExpTime. We give polynomial-time (incomplete) algorithms and demonstrate by experiments that they can be used for practical module extraction

    Energy Density-Flux Correlations in an Unusual Quantum State and in the Vacuum

    Full text link
    In this paper we consider the question of the degree to which negative and positive energy are intertwined. We examine in more detail a previously studied quantum state of the massless minimally coupled scalar field, which we call a ``Helfer state''. This is a state in which the energy density can be made arbitrarily negative over an arbitrarily large region of space, but only at one instant in time. In the Helfer state, the negative energy density is accompanied by rapidly time-varying energy fluxes. It is the latter feature which allows the quantum inequalities, bounds which restrict the magnitude and duration of negative energy, to hold for this class of states. An observer who initially passes through the negative energy region will quickly encounter fluxes of positive energy which subsequently enter the region. We examine in detail the correlation between the energy density and flux in the Helfer state in terms of their expectation values. We then study the correlation function between energy density and flux in the Minkowski vacuum state, for a massless minimally coupled scalar field in both two and four dimensions. In this latter analysis we examine correlation functions rather than expectation values. Remarkably, we see qualitatively similar behavior to that in the Helfer state. More specifically, an initial negative energy vacuum fluctuation in some region of space is correlated with a subsequent flux fluctuation of positive energy into the region. We speculate that the mechanism which ensures that the quantum inequalities hold in the Helfer state, as well as in other quantum states associated with negative energy, is, at least in some sense, already ``encoded'' in the fluctuations of the vacuum.Comment: 21 pages, 7 figures; published version with typos corrected and one added referenc

    Multiscale Analysis in Momentum Space for Quasi-periodic Potential in Dimension Two

    Full text link
    We consider a polyharmonic operator H=(-\Delta)^l+V(\x) in dimension two with l2l\geq 2, ll being an integer, and a quasi-periodic potential V(\x). We prove that the absolutely continuous spectrum of HH contains a semiaxis and there is a family of generalized eigenfunctions at every point of this semiaxis with the following properties. First, the eigenfunctions are close to plane waves eie^{i} at the high energy region. Second, the isoenergetic curves in the space of momenta \k corresponding to these eigenfunctions have a form of slightly distorted circles with holes (Cantor type structure). A new method of multiscale analysis in the momentum space is developed to prove these results.Comment: 125 pages, 4 figures. arXiv admin note: incorporates arXiv:1205.118

    The averaged null energy condition and difference inequalities in quantum field theory

    Full text link
    Recently, Larry Ford and Tom Roman have discovered that in a flat cylindrical space, although the stress-energy tensor itself fails to satisfy the averaged null energy condition (ANEC) along the (non-achronal) null geodesics, when the ``Casimir-vacuum" contribution is subtracted from the stress-energy the resulting tensor does satisfy the ANEC inequality. Ford and Roman name this class of constraints on the quantum stress-energy tensor ``difference inequalities." Here I give a proof of the difference inequality for a minimally coupled massless scalar field in an arbitrary two-dimensional spacetime, using the same techniques as those we relied on to prove ANEC in an earlier paper with Robert Wald. I begin with an overview of averaged energy conditions in quantum field theory.Comment: 20 page

    Multiple gene aberrations and breast cancer: lessons from super-responders.

    Get PDF
    BackgroundThe presence of multiple molecular aberrations in patients with breast cancer may correlate with worse outcomes.Case presentationsWe performed in-depth molecular analysis of patients with estrogen receptor-positive, HER2-negative, hormone therapy-refractory breast cancer, who achieved partial or complete responses when treated with anastrozole and everolimus. Tumors were analyzed using a targeted next generation sequencing (NGS) assay in a Clinical Laboratory Improvement Amendments laboratory. Genomic libraries were captured for 3,230 exons in 182 cancer-related genes plus 37 introns from 14 genes often rearranged in cancer and sequenced to high coverage. Patients received anastrozole (1 g PO daily) and everolimus (5 or 10 mg PO daily). Thirty-two patients with breast cancer were treated on study and 5 (16 %) achieved a partial or complete response. Primary breast tissue was available for NGS testing in three of the responders (partial response with progression free survival of 11 and 14 months, respectively; complete response with progression free survival of 9+ months). The following molecular aberrations were observed: PTEN loss by immunohistochemistry, CCDN1 and FGFR1 amplifications, and PRKDC re-arrangement (NGS) (patient #1); PIK3CA and PIK3R1 mutations, and CCDN1, FGFR1, MYC amplifications (patient #2); TP53 mutation, CCNE1, IRS2 and MCL1 amplifications (patient #3). Some (but not all) of these aberrations converge on the PI3K/AKT/mTOR pathway, perhaps accounting for response.ConclusionsPatients with estrogen receptor-positive breast cancer can achieve significant responses on a combination of anastrozole and everolimus, even in the presence of multiple molecular aberrations. Further study of next generation sequencing-profiled tumors for convergence and resistance pathways is warranted

    Majorana Zero Modes in 1D Quantum Wires Without Long-Ranged Superconducting Order

    Full text link
    We show that long-ranged superconducting order is not necessary to guarantee the existence of Majorana fermion zero modes at the ends of a quantum wire. We formulate a concrete model which applies, for instance, to a semiconducting quantum wire with strong spin-orbit coupling and Zeeman splitting coupled to a wire with algebraically-decaying superconducting fluctuations. We solve this model by bosonization and show that it supports Majorana fermion zero modes. We argue that a large class of models will also show the same phenomenon. We discuss the implications for experiments on spin-orbit coupled nanowires coated with superconducting film and for LaAlO3/SrTiO3 interfaces.Comment: 14 pages. Figures added and a discussion of the effects of quantum phase slips. References Added. Fourth author adde

    The investment location decisions in the steel industry

    Get PDF
    The global dimension of the economy in general and of the steel industry in particular makes the decision regarding the location of new production facilities a challenge for managers. This paper tries to provide tools that make the decision taking process easier. Is assumed that certain tax levy rates are important to this process and they are compared and analyzed. Finally, based on this analysis this paper tries to prioritize some countries in terms of their economic attractiveness in order to identify the most suitable country for placing a steel factory
    corecore