838 research outputs found

    The Extraterrestrial Dust Flux: Size Distribution and Mass Contribution Estimates Inferred From the Transantarctic Mountains (TAM) Micrometeorite Collection

    Get PDF
    This study explores the longā€duration (0.8ā€“2.3 Ma), timeā€averaged micrometeorite flux (mass and size distribution) reaching Earth, as recorded by the Transantarctic Mountains (TAM) micrometeorite collection. We investigate a single sediment trap (TAM65), performing an exhaustive recovery and characterization effort and identifying 1,643 micrometeorites (between 100 and 2,000 Ī¼m). Approximately 7% of particles are unmelted or scoriaceous, of which 75% are fineā€grained. Among cosmic spherules, 95.6% are silicateā€dominated Sā€types, and further subdivided into porphyritic (16.9%), barred olivine (19.9%), cryptocrystalline (51.6%), and vitreous (7.5%). Our (rank)ā€size distribution is fit against a power law with a slope of āˆ’3.9 (R2 = 0.98) over the size range 200ā€“700 Ī¼m. However, the distribution is also bimodal, with peaks centered at ~145 and ~250 Ī¼m. Remarkably similar peak positions are observed in the Larkman Nunatak data. These observations suggest that the micrometeorite flux is composed of multiple dust sources with distinct size distributions. In terms of mass, the TAM65 trap contains 1.77 g of extraterrestrial dust in 15 kg of sediment (<5 mm). Upscaling to a global annual estimate gives 1,555 (Ā±753) t/yearā€”consistent with previous micrometeorite abundance estimates and almost identical to the South Pole Water Well estimate (~1,600 t/year), potentially indicating minimal variation in the background cosmic dust flux over the Quaternary. The greatest uncertainty in our mass flux calculation is the accumulation window. A minimum age (0.8 Ma) is robustly inferred from the presence of Australasian microtektites, while the upper age (~2.3 Ma) is loosely constrained based on 10Be exposure dating of glacial surfaces at Roberts Butte (6 km from our sample site)

    Role of the rumen in copper and thiomolybdate absorption

    Get PDF
    The rumen is the site of significant interactions between Cu, S and Mo. It also shows reactions between Cu, S and Fe. The interaction between Mo and S results in the formation of thiomolybdates, which in the absence of adequate quantities of rumen Cu are absorbed into the animal and bind to Cu in biological compounds. This is the cause of thiomolybdate toxicity, often misleadingly called Cu deficiency. The effects of thiomolybdates being absorbed into the animal are considered, especially how thiomolybdates bind to Cu-containing compounds such as enzymes, decreasing their activity without removing the active Cu component. The sources of Cu, Mo, Fe and S are examined, including the impacts of water and soil on the animal's intake. Within the present review we have been able to provide evidence that: all classes of thiomolybdates are formed in the rumen; in the absence of available Cu all thiomolybdates can be absorbed into the animal rapidly though the rumen wall or via the small intestine; thiomolybdates bind to Cu in biological compounds and are able to cause problems; effects of thiomolybdate are reversible in vivo and in vitro on cessation of thiomolybdate challenge; the tetra-thiomolybdate form is the most potent Cu binder with decreased potency with decreasing S in the compound. Fe will exacerbate a thiomolybdate problem but will not directly cause it
    • ā€¦
    corecore