30 research outputs found

    Urban Rejected Water Reuse in Agriculture for Irrigation in Major Cities of India: A Synoptic Review

    Get PDF
    Indiscriminate and rapid urbanization without sufficient infrastructure to manage huge domestic sewage (urban rejected water) generated by urban centers posing serious threats to different ecosystems in many places across the world. On the other hand, the downstream of urban centers facing an acute shortage of water for irrigation. In recent years reuse of urban waste water is being increased in many countries including India irrespective of adverse impacts on other ecosystems. The present study has provided a synoptic review on urban rejected water reuse for irrigation in the major cities of India with a special focus on banks of the Musi river basin in South India where huge wastewater irrigation is being practiced in the world in comparison with global waste water irrigation practices. In all the cases major contaminants namely fecal coliform, nitrates, Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD) and Dissolved Oxygen (DO) are found in water and with increased soil and groundwater salinity on long term use. The review indicated that there a large scope to intensify the irrigation with proper treatment of wastewater. The study also suggested to understand the impacts of rejected water reuse impact on soilwater-food chain and also emphasizes the need for the establishment of sufficient ETPs to minimize the adverse impacts and also to protect hydroagro ecosystems

    Geophysical and Geochemical Approach for Seawater Intrusion Assessment in the Godavari Delta Basin, A.P., India

    Get PDF
    Coastal lands around Bay of Bengal in Central Godavari Delta are mainly agriculture fields and two times annually paddy crops putting in the study area. Canals of Godavari River are the main source of water for irrigation. Geophysical and geochemical investigations were carried out in the study area to decipher subsurface geologic formation and assessing seawater intrusion. Electrical resistivity tomographic surveys carried out in the watershed-indicated low resistivity formation in the upstream area due to the presence of thick marine clays up to thickness of 20–25 m from the surface. Secondly, the lowering of resistivity may be due to the encroachment of seawater in to freshwater zones and infiltration during tidal fluctuation through mainly the Pikaleru drain, and to some extent rarely through Kannvaram and Vasalatippa drains in the downstream area. Groundwater quality analyses were made for major ions revealed brackish nature of groundwater water at shallow depth. The in situ salinity of groundwater is around 5,000 mg/l and there is no groundwater withdrawal for irrigation or drinking purpose in this area except Cairn energy pumping wells which is using for inject brackish water into the oil wells for easy exploration of oil. Chemical analyses of groundwater samples have indicated the range of salt concentrations and correlation of geophysical and borehole litholog data in the study area predicting seawater-contaminated zones and influence of in situ salinity in the upstream of study area. The article suggested further studies and research work that can lead to sustainable exploitation/use and management of groundwater resources in coastal areas

    Assessment of long-term hydrogeological changes and plausible solutions to manage hydrological extremes in the transnational Ganga River Basin

    No full text
    The Ganga is an international transboundary river that flows across three major riparian countries: India, Nepal, and Bangladesh, where India shares a significant proportion of the total basin area. The river system is highly dynamic and regularly floods in all three countries due to abundant rainfall in a short period of only four months each year that causes tremendous loss of both property and human life. In this study, we have done a synoptic review to synthesize the hydrology, hydrogeology, and modeling studies that have analyzed hydrological changes and their impacts in the Ganga basin. This review also identifies some of the knowledge gaps and discusses possible options for enhancing the understanding of sustainable water development and management. This review indicated that transparent data sharing, use of satellite-based observations along with in-situ data, integrated hydro-economic modeling linked to reliable coupled surface–groundwater models, a central shared decision support center for early warning systems to deal with hydrological extremes, joint river commissions and monitoring teams, and multilateral water sharing treaties (agreements) are required to promote sustainable and equitable distribution of water resources and to avoid water sharing conflicts in the Ganga basin

    Agricultural groundwater management in the Upper Bhima Basin, India: current status and future scenarios

    No full text
    The basaltic aquifers of the Upper Bhima River basin in southern India are heavily utilized for small-scale agriculture but face increasing demand-related pressures along with uncertainty associated with climate change impacts. To evaluate likely groundwater resource impacts over the coming decades, a regional groundwater flow model for the basin was developed. Model predictions associated with different climate change and abstraction scenarios indicate that the continuation of current rates of abstraction would lead to significant groundwater overdraft, with groundwater elevations predicted to fall by −6 m over the next three decades. Groundwater elevations can however be stabilized, but would require 20–30% of the mean surface water discharge from the basin to be recharged to groundwater, along with reductions in pumping (5–10%) brought about by improved water efficiency practices and/or shifts towards lower-water use crops. Modest reductions in pumping alone cannot stabilize groundwater levels; targeted conjunctive use and improved water use efficiency are also needed

    Hydrogeological and groundwater modeling studies to estimate the groundwater inflows into the coal Mines at different mine development stages using MODFLOW, Andhra Pradesh, India

    Get PDF
    The Singareni Collieries Company Ltd (SCCL) is exploiting coal in the Godavari valley coal fields spread over 5.33 km2 in Andhra Pradesh, India. In the area, six workable coal seams have been identified in Barakar formation by the analysis of the geologic logs of 183 bore wells. A finite difference based numerical groundwater flow model is developed with twenty conceptual layers and with a total thickness of 320 m. The flow model was calibrated under steady state conditions and predicted groundwater inflows into the mine pits at different mine development stages. The groundwater budget results revealed that the mining area would receive net groundwater inflows of 5877 m3 day−1, 12,818 m3 day−1, 12,910 m3 day−1, 20,428 m3 day−1, 22,617 m3 day−1 and 14,504 m3 day−1 at six mine development stages of +124 m (amsl), +93 m (amsl), +64 m (amsl), +41 m (amsl), +0 m (amsl) and −41 m (amsl), respectively. The results of the study can be used to plan optimal groundwater pumping and the possible locations to dewater the groundwater for safe mining at different mine development stages

    Reviving the Ganges Water Machine: potential

    No full text
    The Ganges River basin faces severe water challenges related to a mismatch between supply and demand. Although the basin has abundant surface water and groundwater resources, the seasonal monsoon causes a mismatch between supply and demand as well as flooding. Water availability and flood potential is high during the 3–4 months (June–September) of the monsoon season. Yet, the highest demands occur during the 8–9 months (October–May) of the non-monsoon period. Addressing this mismatch, which is likely to increase with increasing demand, requires substantial additional storage for both flood reduction and improvements in water supply. Due to hydrogeological, environmental, and social constraints, expansion of surface storage in the Ganges River basin is problematic. A range of interventions that focus more on the use of subsurface storage (SSS), and on the acceleration of surface–subsurface water exchange, has long been known as the Ganges Water Machine (GWM). The approach of the GWM for providing such SSS is through additional pumping and depleting of the groundwater resources prior to the onset of the monsoon season and recharging the SSS through monsoon surface runoff. An important condition for creating such SSS is the degree of unmet water demand. The paper shows that the potential unmet water demand ranging from 59 to 124 Bm3 year−1 exists under two different irrigation water use scenarios: (i) to increase irrigation in the Rabi (November–March) and hot weather (April–May) seasons in India, and the Aman (July–November) and Boro (December–May) seasons in Bangladesh, to the entire irrigable area, and (ii) to provide irrigation to Rabi and the hot weather season in India and the Aman and Boro seasons in Bangladesh to the entire cropped area. However, the potential for realizing the unmet irrigation demand is high only in 7 sub-basins in the northern and eastern parts, is moderate to low in 11 sub-basins in the middle, and has little or no potential in 4 sub-basins in the western part of the Ganges basin. Overall, a revived GWM plan has the potential to meet 45–84 Bm3year−1 of unmet water demand.</p

    Groundwater evaporation ponds: a viable option for the management of shallow saline waterlogged areas

    No full text
    The province of Punjab is the main food basket of India. In recent years, many regions of Punjab are facing acute waterlogging problems and increased secondary salinity, which have negative impacts on food security of the nation. In particular, these problems are more pronounced in the Muktsar district of Punjab. The observed groundwater levels trend between 2005 and 2011 implies that groundwater levels are coming towards the land surface at the rate of 0.5 m/year in Lambi and Malout blocks. In this study, a groundwater flow model was constructed using MODFLOW to understand the groundwater table dynamics and to test the groundwater evaporation ponds to draw down the groundwater levels in the waterlogging areas of Muktsar district. The predicted flow model results indicate that groundwater levels could be depleted at the rate of 0.3 m/year between 2012 and 2018 after the construction of Groundwater Evaporation Ponds (GEP). In addition, the constructed ponds can be used for aquaculture that generates additional income. The proposed GEP method may be a promising tool and suitable for the reduction of waterlogging in any region if there is no proper surface drainage, and also for enhancement of agricultural production that improves the social and economic status of the farming community
    corecore