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The Singareni Collieries Company Ltd (SCCL) is exploiting coal in
the Godavari valley coal fields spread over 5.33 km2 in Andhra
Pradesh, India. In the area, six workable coal seams have been
identified in Barakar formation by the analysis of the geologic logs
of 183 bore wells. A finite difference based numerical groundwater
flow model is developed with twenty conceptual layers and with a
total thickness of 320 m. The flow model was calibrated under
steady state conditions and predicted groundwater inflows into
the mine pits at different mine development stages. The ground-
water budget results revealed that the mining area would receive
net groundwater inflows of 5877 m3 day�1, 12,818 m3 day�1,
12,910 m3 day�1, 20,428 m3 day�1, 22,617 m3 day�1 and 14,504
m3 day�1 at six mine development stages of þ124 m (amsl),
þ93 m (amsl), þ64 m (amsl), þ41 m (amsl), þ0 m (amsl) and
�41 m (amsl), respectively. The results of the study can be used to
plan optimal groundwater pumping and the possible locations to
dewater the groundwater for safe mining at different mine
development stages.
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1. Introduction

The construction of an excavation often means penetrating the local or regional groundwater table,
which may cause water inrush into the excavation [37]. If the host rock is significantly permeable, it
can become a big problem for the excavation operations. Dry working conditions are preferable as
they reduce wear and tear of machinery, reduce earth moving costs that improve the slope stability
and therefore safety can be assured in mining operations. There are number of methods available for
the mine management and they are dewatering, diversion, sealing or a combination of these methods.
In order to identify the most economic and low cost method, it is very essential to identify the source
of groundwater seepage. The successes of dewatering operation depend on the understanding of the
local and regional groundwater regime. This requires estimation of the actual water inflows into mine
pits to plan the dewatering operations.

The potential impact of ground water inflows to a mine is often evaluated in three phases. The first
phase involves collection of the hydrology and hydrogeologic information in the area including
geologic structure, aquifer parameters such as hydraulic conductivity of the formation, groundwater
storage and the dimensions of the aquifer to estimate the actual inflows [19]. In the second phase
potential impacts and causes of mining operations on groundwater regime are to be carefully
evaluated through regular monitoring of the groundwater levels in the bore wells and collection of
groundwater seepage information into the pits [33]. The estimation of inflows coupled with structural
mapping of the geology gives very valuable information to determine and control the volume and
occurrence of groundwater inflows. In the third phase, inflows can be estimated through dewatering,
computer modeling or through the application of practical experience [19,15].

A computer model can be used to simulate groundwater flows into the mines as the excavation of
the mine enlarges. The regular monitoring of groundwater levels and the amount of groundwater
withdrawal are required to update and to calibrate/validate the model for every stage of the mine
development. Numerical models can be a powerful tool to solve the number of ground water related
problems associated with mining and mine closure. But specific features must be addressed and that
requires a deep understanding of the mining environment [22,33]. Effective dewatering strategies
should be developed to minimize operational cost and to minimize the impact of groundwater
pumping in the mines on groundwater regime in the area.

In recent years, ground water numerical flow modelling has become an important tool for the
mine safety legislation to protect the underground mines from heavy groundwater seepage. Many
researchers successfully utilized numerical models to estimate the groundwater inflows into highly
karst aquifer systems [3,25,33], into coal mines [32,38] and into the granitic aquifers [34]. The correct
modelling approach depends on the scale of the modelling application [34].

The present study aims to convert the part of existing Srirampur underground coal mines into
open cast mines with depth up to 311 m that are located in Adilabad district of Andhra Pradesh state
in India. The study has got major importance due to its huge coal reserves that will have major impact
on energy security of India, in particular of Andhra Pradesh. The increase in depth of exploitation of
coal mines are subjected to water inrush into the mines. For the protection and safe sustainable mine
exploitation needs to understand the groundwater seepage into the mine pits. In the present study
area extensive deep borehole (upto 1000 m depth) drilling engineering methods are deployed and
distributed throughout the area to understand the typical mining sub-surface hydrogeologic setting
for the conversion of under groundwater mining to open cast mining. This has led to deep
understanding of structural geology of the area and more reliable conceptualization of the typical
aquifer system in the groundwater flow model.

The objective of the present study is to estimate the groundwater inflows into mine pits at
different mine development stages for optimal groundwater dewatering plans using numerical
groundwater model. This paper describes how the numerical flow model (MODFLOW 2005) can be
applied to solve the issues related to ground water inflows into coal mines depending on the different
mine development stages.
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2. Location of the study area

Srirampur open cast block covers about 5.5 km2 in Mancherial mandal of the Adilabad district,
Andhra Pradesh (A.P) (Fig. 1). The study area lies between North Latitude of 18149004″ to 18151012″ and
East Longitude of 79129017″ to 79132002″. The area experiences a sub-tropical monsoon climate with a
hot dry summer from March to the mid of June followed by the rainy season up to the mid of October.
The temperature ranges from 30.6 to 48.6 1C during the summer period and the minimum ranges
from 9.1 1C to 29.6 1C during winter season. The average annual rainfall varies from 690 to 1510 mm
with a mean of 1100 mm and the humidity ranges from 38% to 100% during the summer and winter
seasons, respectively.
3. Geology of the study area

The Srirampur Coal field area is a part of Godavari Valley Coal field that belongs to the Lower
Gondwana group of rocks. The stratigraphy in the area as reported by [29] is shown in Table 1.
Srirampur Opencast Project area is highly complicated block in whole of the Godavari Valley Coalfield.
No structural features were observed on the surface, because the block is mostly covered by soil/
alluvium deposits. Therefore, the geological structure/stratigraphy of the block has been deciphered
mainly based on the sub-surface data from boreholes drilled upto 1000 m in this block. In some parts
of the Godavari Valley coalfield, the nature of depositional pattern causes rolling in the attitude of
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Fig. 1. Location map of the Srirampur OCP-II area in the Adialabad district, SCCL, A.P.



Table1
Stratigraphic succession of Srirampur OCP-II and IIa inclines block.

Age Group Formation General lithology Maximum
thickness (m)

Recent Soil cover 5.00
Permian Lower

gondwana
Barren
measures

Medium to very coarse grained gray/greenish ferruginous sandstone
with subordinate clays/sandy shales

140.77

Barakar Predominantly grey/white medium to coarse grained sandstone
with coal seams/shale and clays

250.00

Talchir Fine to medium grained greenish sandstones, silt stones, clays and
pebbles beds

35.64þ

Unconformity

Proterozoic Sullavai Red and white banded fine grained sandstone and quartzites.

Raniganj Formation
Barren measure Formation
Barakar Formation

Talchir Formation
Sullavai Formation

Fault

Coa Seams

Fig. 2. Geological cross sections of the bore holes along the cross section of AB and CD in the Srirampum OCP-II in the Adilabad
district, A.P.
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beds that otherwise could be attributed to faulting as the surface exposures were very scanty. Initially
43 boreholes were drilled in the area by Mineral Exploration Corporation Limited (MECL). In view of
its intricate structure, 51 additional boreholes were drilled by SCCL in the block. The structure of the
block was interpreted using the 94 borehole data by SCCL. After opening of the SRP-2 and SRP-2A
inclines, it is observed that the structures of underground workings are at variance with the structure
interpreted. Once again, a number of additional boreholes were drilled totalling to 183 boreholes up to
March 2000. Normally, around 8 to 12 boreholes per km2 were to be drilled to delineate the block for
the board and pillar method of working, whereas 34 boreholes per km2 were drilled in the block due
to the complexity of its structure [30].
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The block is characterized by unusual swings in the strike direction of coal deposit which was
further accentuated due to the presence of 41 faults of various dimensions and directions. The analysis
of the faults revealed that 11 are Dip faults, 6 are Strike faults and the remaining 25 faults are Oblique,
Dip oblique or Strike oblique faults. Nearly 30 of them, trend in the WNW-ESE to NNW-SSE.
Remaining 11 faults trend almost N–S direction. A perusal of the fault throw direction shows that 27
faults dip towards east. While the rest of them towards the west. The throw displacement ranges from
1 m to 250 m and each fault shows decreasing/increasing trend along its direction. The gradient of the
coal measures varies from 1 in 4 to 1 in 13. The block, which was initially projected as an underground
mine under the SRP-2&2A inclines, could not be continued as its exploitation strategies challenged
often due to the presence of numerous faults. Due to favourable stripping ratio and for optimum
extraction of coal seams, the SRP-2,2A blocks are recommended for conversion into an opencast
mining.

The complexity and vertical disposition of different formations in the area are shown in Fig. 2 with
two typical cross sections. These figures indicated that the rock types includes medium to very coarse
grained grey/greenish ferruginous sandstone with subordinate clays/sandy shales. The top layer
contains weathered soils upto a depth of 5 m which is underlined by Barren measure formations
encountered at different depths. These formations were underlined by Barakar formation which
consists of predominantly grey/white colour medium to coarse grained sandstones with coal seams
and clays extend up to 250 m depth. It has been underlined by Talchir formation which consists of fine
to medium grained greenish sandstones, silt stones clays and pebble beds followed by unconformity.
The basement of formation in the area belongs to the Proterozoic age Sulluvai red white banded fine
grained sandstones and quartzites (Fig. 2).

The Barakar formations are found to be embedded with 8–10 coal seams which are divided into
upper and lower members. The upper member starts from the base of VI coal seam up to the Barren
measures/Barakar formation in the top with a total thickness 180 m. The lower member extends
further deep upto 1000 m from the bottom of the VI coal seam.
4. Aquifer characteristics

Aquifer performance test was conducted in the block during April 2006 by SCCL. The well is
constructed up to a depth of 208 m. The depth to the groundwater level is 5.62 m during April 2006
and the groundwater was found under confined conditions. The test has been conducted with a
constant discharge of 197 m3 day�1. The observed maximum drawdown was 21.46 m in the test well
and 6.98 m in the observation well �1 at a distance of 10 m and 5.47 m in observation well �2 at
distance of 15 m from the test well. The data has been analyzed using Cooper and Jacob method to
obtain the aquifer parameters [4]. The estimated hydraulic conductivity is 9�10�2 m day�1 and
transmissivity 11.16 m2 day�1 with a storativity of 3.1�10�4 [30].
5. Groundwater flow modeling

The variability and complexity of three dimensional heterogeneous subsurface hydrogeologic
settings strongly influence the groundwater flow. The reliable conceptualization of the aquifer can be
described accurately only through careful hydrogeologic analysis and practice. The numerical model
can be better tools to understand the complex groundwater flow process in the typical
hydrogeological conditions. Groundwater flow model was constructed in the sub-basin covering
the Srirampur Open Cast Project area using Visual MODFLOW [18,1,11] to simulate the groundwater
conditions and to evaluate the optimal dewatering scenarios. MODFLOW 2005 is cell-centered, 3D-
finite difference model and is the most widely used for calculation of the steady state or transient
saturated groundwater flow [13,14,7]. In the present study a steady state groundwater flowmodel was
developed as no major seasonal groundwater level fluctuations were observed in the study area.
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5.1. Aquifer conceptualization and discretization

The discontinuity and anisotropy induced by the fracture networks in the fractured or weathered
aquifer systems can be minimized at large scale in an equivalent porous medium (EPM) approach
[31,36,33,34]. Therefore, the present study area is simulated as EPM approach using MODFLOW. The
entire Srirampur opencast area has been divided into 58 columns and 68 Rows with grid spacing of
250 m�250 m and 125 m�125 m in the flow mode. The resistivity investigation and bore well
geologic logging are good tools to conceptualize the aquifer system and to understand the subsurface
dynamics [23,35,9,17,24]. In the present study the vertical dispositions of aquifer layers are simulated
in the model based on the analysis of 183 borehole geologic logs spreads over the area. Then the
groundwater model was developed with twenty conceptual layers consisting of Sullavai, Talchir,
SRP OCP - II
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Fig. 3. Spatial disposition of hydraulic conductivity for each geologic formation in Srirampur OCP2, SCCL, Adilabad District, A.P.
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Fig. 4. Vertical disposition of different geologic layers and distribution of hydrualic conductivity for each geologic formation in
the study area covering Srirampur OCP-II project.
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Barakar sandstones and are inter bedded with coal seams, Barren measure and Kamthi formations
with a total thickness of about 311 m (Figs. 3 and 4).
5.2. Model parameters and boundary conditions

The boundary conditions are a key component of the conceptualization of a groundwater flow
system [6,5,20,28,26]. Hydrological boundaries are assigned to the model based on topographic maps
and field investigations. The hydraulic conductivity of the different geologic formations are estimated
by pumping tests carried out in the area. The estimated hydraulic conductivity of Barakar formation is
0.1 m day�1 and for Talcher and Sulavai formations it is 0.5 m day�1 and 1.4 m day�1, respectively.
In contrast, the hydraulic conductivity of Godavari River alluvium is of 4 m day�1 and the hydraulic
conductivity of fault zones were found as 1.5 m day�1. The same hydraulic properties were given to
the model to simulate the groundwater fluxes across the study area (Figs. 3 and 4). The spatial
distribution of hydraulic conductivity is shown in Fig. 3 and vertical distribution is shown Fig. 4. The
River boundary condition is assigned to the Godavari River and two perennial streams Pedda vagu in
the east and Rallavagu on the west, using the stream bed elevations and River stage collected in 2008.
The constant head boundary condition was used in the north eastern part of the area and south east
adjacent to the Godavari River which matches with the observed hydraulic heads in the area (Fig. 5).
The mine extensions in different scenarios are also shown in Fig. 5. The groundwater seepage from the
working mines are being collected in the sumps of various seams at different elevations and then
pumped out. The same pumping has been distributed appropriately using appropriate screen location
according to the depth of working mines in the mining areas in the flow model (Fig. 6 and Table 2).

In the study area, field level recharge estimations are not available. However, groundwater
resource estimation committee (GEC) recommended recharge estimates in different geologic terrains
in India based on local climate and geology through the evaluation of a number of field level
investigation data throughout India [10]. It is suggested that 10–12% recharge could be considered in
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the annual rainfall in hard rock aquifers and 15–30% in alluvial aquifers. So that for the present study,
the back groundwater recharge has considered as 12% (110 mm yr�1) in the annual rainfall in the area
that was distributed uniformly throughout the area. However, the groundwater recharge in the
alluvial formations of the Godavari River course was assigned as 350 mm yr�1.
6. Results and discussions

6.1. Model calibration and sensitivity analysis

Groundwater flow model calibration is achieved through a trial and error method by adjusting the
two key parameters i.e., hydraulic conductivity and recharge rates. During the model calibration 22
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Table 2
Groundwater pumping from the existing mines in the study area.

Mine name (shown in Fig. 6) Pumping from mine floor m3 day�1

MK-4 4032
RK-5 1940
RK-6 3055
RK-7 4860
RK-8 2022
RK-NP 774
IK-1A 3150
SRP-I 2962
SRP-3 &3A 2916

L. Surinaidu et al. / Water Resources and Industry 7-8 (2014) 49–65 57
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observed hydraulic heads measured in April 2006 are used (Fig. 7). During the sensitivity analysis
[16,12,27,2], it is observed that model is highly sensitive to both hydraulic conductivity and recharge.
Then the average hydraulic conductivity simulated in the groundwater flow model has been
moderately modified to 0.15 m day�1, 0.4 m day�1, 1.2 m day�1 and 5 m day�1 for Barakar, Talchar,
Sulavai formations and River alluvium, respectively (Figs. 3 and 4). The recharge has been
redistributed based on the observed hydrogeology and estimated aquifer hydraulic conductivity by
matching observed and computed groundwater heads. The distinction of recharge area, intermediate
area and discharge area with the groundwater recharge rates of 100, 90 and 80 mm yr�1 respectively
have been simulated during the model calibration (Fig. 8). The recharge in alluvial plains of the
Godavari River was reduced to 332 mm yr�1 (5% was reduced in the initial value). Then the
reasonable match between observed and calculated heads is achieved (Fig. 9). At the end of the model
m
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Fig. 7. Location map of observation wells in the Srirampur OCP-II area in the flow model.
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calibration the RMS and NRMS errors are 3.2 and 2.1, respectively. The model has been validated with
the observed groundwater heads measured in June 2006 and there is no significant change in RMS
and NRMS. Therefore, the model was considered as well calibrated for observed field hydrogeological
conditions. The computed groundwater contours indicated that the groundwater flow direction
towards mine pits from the aquifer and general groundwater flow direction towards the Godavari
River from groundwater aquifer (Fig. 10).
6.2. Groundwater budget and model predictions

The regional groundwater budget is estimated using zone budget package in Visual Modflow. The
area has been divided into 12 major zones for making groundwater budget computations for the
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Fig. 8. Simulated distributed groundwater recharge in mm yr�1 in the study area.
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benefit of mine management authority of SCCL. This could help to SCCL to handled further to update
or predict inflows at different mine development stages (Fig. 11). The extent of quarry area and depth
of mine floor varies from initial stage to final stage during the open cast mining. Depending on the
availability of mine void space, internal dumping of overburden material will take place adjacent to
the active mine floor. Hence, groundwater conditions vary dynamically during mine development.
The stage wise groundwater mine floors are simulated using stage wise mine plans by incorporating
the quarry area, depth and extent of internal dump. Accordingly the hydraulic parameters were
modified in the quarry areas under different mine stages in the groundwater flow model.

The groundwater balance for the entire study area for six different mine development stages are
presented in Table 3 and Fig. 5. Fig. 5 show that areal extension of mine development in three
scenarios. The areal extension has been increased from first to third scenario and depths vary at
different development stages. Table 3 explains the groundwater withdrawal scenarios and interactive
flows between different layers/zones. The computed groundwater budget for the entire sub-basin
indicates that most of the flow is taking place along the fault zones. The predicted groundwater
inflows into a different mine pits at different mine development stages is attempted by importing
corresponding elevations and the results are shown in Table 4. The net predicted groundwater inflows
into the SRP OCP-II mine is 5877 m3 day�1 in the 1st scenario at þ124 m (amsl). The next scenario
was simulated at þ93 m (amsl) mine floor, at this stage the predicted groundwater inflow into the
SRP OCP-II is 12,818 m3 day�1. The third scenario is simulated at þ62 m (amsl) mine floor level and
the predicted groundwater inflow into the SRP OCP-II mine is 12,910 m3 day�1. The groundwater
inflows at þ41, þ0 and �41 m amsl are 20,428 m3 day�1, 22,617 m3 day�1 and 14,508 m3 day�1. The
moderate reduction in groundwater inflows at �41 m amsl than other scenarios is due to reduction in
areal distribution of mining.

The controlled groundwater operations in the coal mines covering Zones 3 and 5 indicate uniform
lateral flow towards the Mines. The computed inflow is 8000 m3 day�1 from the area towards the
working mines RK5 incline and RK6A incline (Table 4). The model computations indicate that Zone 10
(MK4 inc) and Zone 11 (IK1A inc) would be receiving a very meager flows 201 m3 day�1 and
2891 m3 day�1 respectively under current mine development scenario. The backfilling of void spaces
with overburden will help to stabilize the groundwater inflow during mine development. A small
amount of inflow is expected into the Zone 6 (RK7) and Zone 7 (RK8) due to ongoing mining activities
in the Zones 4 and 5. The relative increase in computed inflow into the Zone 8 (SRP3 and 3A) and Zone
9 (SRP1) indicate the influence of lateral flows. The groundwater budget computations at different
mine development stages of SRPOCP indicate that the Godavari River is mainly acting as influent
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stream during most of the time in the area. The influent nature of the Godavari River provides
replenishment of groundwater inflow around the SRP OCP. The groundwater flow model is not
considered direct surface runoff into mine pits, therefore in making withdrawals/pumping plans the
direct runoff must be considered.
7. Conclusions and recommendations

The present study area has simulated complex groundwater flow process in the typical
hydrogeological conditions with the help of high resolution hydrogeologic information and numerical
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modeling studies. It provides significant understanding of the groundwater flow in the region using
equivalent porous medium approach. The analysis of hydrogeology indicated that faults are
controlling factors for groundwater seepage in the area. The groundwater inflow into the quarry is
mainly dependent on quarry floor level and surrounding groundwater level. The calibrated numerical
model against the measured potentiometric surface under the assumed steady-state conditions predicted
that the proposed open cast mine (SRPOCP-II) would require a groundwater pumping of 5877 m day�1 in
the first stage of development. In the second and third development stages the required groundwater
pumping would be 12,818 m day�1 and 12,910 m day�1, respectively. In the final stage of mine
development 14,504 mday�1 of groundwater pumping is required. Groundwater budget in the area
indicated that Godavari River mainly receives base flows from the groundwater aquifer system. Further
the model could help to mine development authority to know groundwater inflows into mine pits at
required depth by updating the models with relevant data to install required pumping infrastructure. The



Table 3
Groundwater balance in the study area.

In put in m3 day�1 Out put in m3 day�1

In the first scenario (mine floor at 124 m (amsl))
Lateral inflow 36,237 Lateral out flow 14,963
Recharge 18,886 Groundwater pumping from the mines 21,763
Godavari River and streams 17,491 Godavari River and streams 35,885
Total¼72,614 Total¼72,611

In the second scenario (mine floor at 93 m (amsl))
Lateral inflow 36,583 Lateral out flow 23,176
Recharge 31,751 Groundwater pumping from the mines 22,385
Godavari River and streams 17,052 Godavari River and streams 39,820
Total¼85,386 Total¼85,381

In the third scenario (mine floor at 62 m (amsl))
Lateral inflow 36,593 Lateral out flow 23,853
Recharge 31,726 Groundwater pumping from the mines 22,460
Godavari River and streams 17,743 Godavari River and streams 39,739
Total¼86,062 Total¼86,052

Table 4
Total groundwater inflows into different mine pits in the study area.

Zone name referred in Fig. 11 Net inflows (m3 day�1) into different zones at different depths in m amsl

þ124 m þ93 m þ62 m þ41 m þ0 m �41 m

Zone 2 7617 8,300 8,213 2,792 580 4,746
Zone 3 3412 3,417 3,417 3,636 4,291 3,449
Zone 4 8291 8,716 8,718 12,363 11,095 8,649
Zone 5 6447 6,922 6,920 8,321 �18,334 6,687
Zone 6 �1563 �2,158 �2,160 �2,877 �3,851 �1,834
Zone 7 �3044 �3,517 �3,518 �6,070 �4,477 �3,596
Zone 8 3779 3,993 3,997 9,783 2,929 4,758
Zone 9 421 752 751 2,188 1,332 684
Zone 10 201 82 82 135 288 99
Zone 11 2819 2,785 2,784 2,763 2,791 2,778
Zone 12 (SRP-OCP II) 5877 12,818 12,910 20,428 22,617 14,504
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study may be a typical case study for solving similar complicated mining hydrogeological environments.
It can help for better understanding of hydrogeologic system to design of optimal groundwater withdrawal
schemes for dewatering mine pits for safe mining. The major limitation of the model is uncertainties
associated with aquifer parameters simulated in the model can play major role in model results.
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