836 research outputs found

    A semiclassical tetrahedron

    Get PDF
    We construct a macroscopic semiclassical state state for a quantum tetrahedron. The expectation values of the geometrical operators representing the volume, areas and dihedral angles are peaked around assigned classical values, with vanishing relative uncertainties.Comment: 10 pages; v2 revised versio

    Grasping rules and semiclassical limit of the geometry in the Ponzano-Regge model

    Get PDF
    We show how the expectation values of geometrical quantities in 3d quantum gravity can be explicitly computed using grasping rules. We compute the volume of a labelled tetrahedron using the triple grasping. We show that the large spin expansion of this value is dominated by the classical expression, and we study the next to leading order quantum corrections.Comment: 18 pages, 1 figur

    Sustainability Reporting as a Challenge for Performance Measurement: Literature Review

    Get PDF
    This paper aims to provide a systematic literature review of scientific works on the integration of performance measurement (PM) and sustainability reporting (SR) applying content analysis. The research question is how performance measurement system (PMS) could help to ensure an effective sustainability reporting. The literature review shows the relationship between PMS and sustainability reporting in terms of integrated purpose, measurements and actors/ownership in supporting the decision-making process at different stages: planning, control, and reporting

    Physical boundary state for the quantum tetrahedron

    Full text link
    We consider stability under evolution as a criterion to select a physical boundary state for the spinfoam formalism. As an example, we apply it to the simplest spinfoam defined by a single quantum tetrahedron and solve the associated eigenvalue problem at leading order in the large spin limit. We show that this fixes uniquely the free parameters entering the boundary state. Remarkably, the state obtained this way gives a correlation between edges which runs at leading order with the inverse distance between the edges, in agreement with the linearized continuum theory. Finally, we give an argument why this correlator represents the propagation of a pure gauge, consistently with the absence of physical degrees of freedom in 3d general relativity.Comment: 20 pages, 6 figure

    From twistors to twisted geometries

    Full text link
    In a previous paper we showed that the phase space of loop quantum gravity on a fixed graph can be parametrized in terms of twisted geometries, quantities describing the intrinsic and extrinsic discrete geometry of a cellular decomposition dual to the graph. Here we unravel the origin of the phase space from a geometric interpretation of twistors.Comment: 9 page

    Towards the graviton from spinfoams: higher order corrections in the 3d toy model

    Full text link
    We consider the recent calculation gr-qc/0508124 of the graviton propagator in the spinfoam formalism. Within the 3d toy model introduced in gr-qc/0512102, we test how the spinfoam formalism can be used to construct the perturbative expansion of graviton amplitudes. Although the 3d graviton is a pure gauge, one can choose to work in a gauge where it is not zero and thus reproduce the structure of the 4d perturbative calculations. We compute explicitly the next to leading and next to next to leading orders, corresponding to one-loop and two-loop corrections. We show that while the first arises entirely from the expansion of the Regge action around the flat background, the latter receives contributions from the microscopic, non Regge-like, quantum geometry. Surprisingly, this new contribution reduces the magnitude of the next to next to leading order. It thus appears that the spinfoam formalism is likely to substantially modify the conventional perturbative expansion at higher orders. This result supports the interest in this approach. We then address a number of open issues in the rest of the paper. First, we discuss the boundary state ansatz, which is a key ingredient in the whole construction. We propose a way to enhance the ansatz in order to make the edge lengths and dihedral angles conjugate variables in a mathematically well-defined way. Second, we show that the leading order is stable against different choices of the face weights of the spinfoam model; the next to leading order, on the other hand, is changed in a simple way, and we show that the topological face weight minimizes it. Finally, we extend the leading order result to the case of a regular, but not equilateral, tetrahedron.Comment: 24 pages, many figure

    Towards the graviton from spinfoams: the 3d toy model

    Full text link
    Recently, a proposal has appeared for the extraction of the 2-point function of linearised quantum gravity, within the spinfoam formalism. This relies on the use of a boundary state, which introduces a semi-classical flat geometry on the boundary. In this paper, we investigate this proposal considering a toy model in the (Riemannian) 3d case, where the semi-classical limit is better understood. We show that in this limit the propagation kernel of the model is the one for the harmonic oscillator. This is at the origin of the expected 1/L behaviour of the 2-point function. Furthermore, we numerically study the short scales regime, where deviations from this behaviour occur.Comment: 8 pages, 2 figures; v3 revised versio

    Coupling gauge theory to spinfoam 3d quantum gravity

    Full text link
    We construct a spinfoam model for Yang-Mills theory coupled to quantum gravity in three dimensional riemannian spacetime. We define the partition function of the coupled system as a power series in g_0^2 G that can be evaluated order by order using grasping rules and the recoupling theory. With respect to previous attempts in the literature, this model assigns the dynamical variables of gravity and Yang-Mills theory to the same simplices of the spinfoam, and it thus provides transition amplitudes for the spin network states of the canonical theory. For SU(2) Yang-Mills theory we show explicitly that the partition function has a semiclassical limit given by the Regge discretization of the classical Yang-Mills action.Comment: 18 page

    Linearized dynamics from the 4-simplex Regge action

    Full text link
    We study the relation between the hessian matrix of the riemannian Reggae action on a 4-simplex and linearized quantum gravity. We give an explicit formula for the hessian as a function of the geometry, and show that it has a single zero mode. We then use a 3d lattice model to show that (i) the zero mode is a remnant of the continuum diffeomorphism invariance, and (ii) we recover the complete free graviton propagator in the continuum limit. The results help clarify the structure of the boundary state needed in the recent calculations of the graviton propagator in loop quantum gravity, and in particular its role in fixing the gauge.Comment: 16 (+9 Appendix) pages, 1 figur
    • …
    corecore