2,210 research outputs found

    Unambiguous evidence of coronal implosions during solar eruptions and flares

    Get PDF
    In the implosion conjecture, coronal loops contract as the result of magnetic energy release in solar eruptions and flares. However, after almost two decades, observations of this phenomenon are still rare and most previous reports are plagued by projection effects so that loop contraction could be either true implosion or just a change in loop inclination. In this paper, to demonstrate the reality of loop contractions in the global coronal dynamics, we present four events with the continuously contracting loops in an almost edge-on geometry from the perspective of SDO/AIA, which are free from the ambiguity caused by the projection effects, also supplemented by contemporary observations from STEREO for examination. In the wider context of observations, simulations and theories, we argue that the implosion conjecture is valid in interpreting these events. Furthermore, distinct properties of the events allow us to identify two physical categories of implosion. One type demonstrates a rapid contraction at the beginning of the flare impulsive phase, as magnetic free energy is removed rapidly by a filament eruption. The other type, which has no visible eruption, shows a continuous loop shrinkage during the entire flare impulsive phase, which we suggest shows the ongoing conversion of magnetic free energy in a coronal volume. Corresponding scenarios are described that can provide reasonable explanations for the observations. We also point out that implosions may be suppressed in cases when a heavily mass-loaded filament is involved, possibly serving as an alternative account for their observational rarity

    On the possibility of calibrating urban storm-water drainage models using gauge-based adjusted radar rainfall estimates

    Get PDF
    Traditionally, urban storm water drainage models have been calibrated using only raingauge data, which may result in overly conservative models due to the lack of spatial description of rainfall. With the advent of weather radars, radar rainfall estimates with higher temporal and spatial resolution have become increasingly available and have started to be used operationally for urban storm water model calibration and real time operation. Nonetheless, the insufficient accuracy of radar rainfall estimates has proven problematic and has hindered its widespread practical use. This work explores the possibility of improving the applicability of radar rainfall estimates to the calibration of urban storm-water drainage models by employing gauge-based radar rainfall adjustment techniques. Four different types of rainfall estimates were used as input to the recently verified urban storm water drainage models of the Beddington catchment in South London; these included: raingauge, block-kriged raingauge, radar (UK Met Office Nimrod) and the adjusted (or merged) radar rainfall estimates. The performance of the simulated flow and water depths was assessed using measurements from 78 gauges. Results suggest that a better calibration could be achieved by using the block-kriged raingauge and the adjusted radar estimates as input, as compared to using only radar or raingauge estimates

    Software-defined networking: guidelines for experimentation and validation in large-scale real world scenarios

    Get PDF
    Part 1: IIVC WorkshopInternational audienceThis article thoroughly details large-scale real world experiments using Software-Defined Networking in the testbed setup. More precisely, it provides a description of the foundation technology behind these experiments, which in turn is focused around OpenFlow and on the OFELIA testbed. In this testbed preliminary experiments were performed in order to tune up settings and procedures, analysing the encountered problems and their respective solutions. A methodology consisting of five large-scale experiments is proposed in order to properly validate and improve the evaluation techniques used in OpenFlow scenarios

    The QueuePusher: enabling queue management in OpenFlow

    Get PDF

    Onde posicionar sensores de umidade e de tensão de água do solo próximo da planta para um manejo mais eficiente da água de irrigação.

    Get PDF
    A irrigação eficiente é aquela com menor consumo de energia e menor perda de água, contribuindo na maior conservação dos recursos hídricos, por ser aplicada no momento correto, isto é, aquele em que a umidade do solo começa a comprometer a absorção de água pela planta. Essa irrigação eficiente requer também a reposição correta da água perdida pelas plantas desde a última irrigação.bitstream/item/118884/1/CircularTecnica-109-Onde-posicionar-sensores.pd

    Observations of Reconnection Flows in a Flare on the Solar Disk

    Get PDF
    Magnetic reconnection is a well-accepted part of the theory of solar eruptive events, though the evidence is still circumstantial. Intrinsic to the reconnection picture of a solar eruptive event, particularly in the standard model for two-ribbon flares ("CSHKP" model), are an advective flow of magnetized plasma into the reconnection region, expansion of field above the reconnection region as a flux rope erupts, retraction of heated post-reconnection loops, and downflows of cooling plasma along those loops. We report on a unique set of SDO/AIA imaging and Hinode/EIS spectroscopic observations of the disk flare SOL2016-03-23T03:54 in which all four flows are present simultaneously. This includes spectroscopic evidence for a plasma upflow in association with large-scale expanding closed inflow field. The reconnection inflows are symmetric, and consistent with fast reconnection, and the post-reconnection loops show a clear cooling and deceleration as they retract. Observations of coronal reconnection flows are still rare, and most events are observed at the solar limb, obscured by complex foregrounds, making their relationship to the flare ribbons, cusp field and arcades formed in the lower atmosphere difficult to interpret. The disk location and favorable perspective of this event have removed these ambiguities giving a clear picture of the reconnection dynamics.Comment: 9 pages, 5 figures, and 1 table. Accepted for publication in ApJ
    corecore