33 research outputs found

    Inhibition of cartilage and bone destruction in adjuvant arthritis in the rat by a matrix metalloproteinase inhibitor

    Get PDF
    Considerable evidence has associated the expression of matrix metalloproteinases (MMPs) with the degradation of cartilage and bone in chronic conditions such as arthritis. Direct evaluation of MMPs' role in vivo has awaited the development of MMP inhibitors with appropriate pharmacological properties. We have identified butanediamide, N4- hydroxy-2-(2-methylpropyl)-N1-[2-[[2-(morpholinyl)ethyl]-,[S- (R*,S*)] (GI168) as a potent MMP inhibitor with sufficient solubility and stability to permit evaluation in an experimental model of chronic destructive arthritis (adjuvant-induced arthritis) in rats. In this model, pronounced acute and chronic synovial inflammation, distal tibia and metatarsal marrow hyperplasia associated with osteoclasia, severe bone and cartilage destruction, and ectopic new bone growth are well developed by 3 wk after adjuvant injection. Rats were injected with Freund's adjuvant on day 0. GI168 was was administered systemically from days 8 to 21 by osmotic minipumps implanted subcutaneously. GI168 at 6, 12, and 25 mg/kg per d reduced ankle swelling in a dose-related fashion. Radiological and histological ankle joint evaluation on day 22 revealed a profound dose related inhibition of bone and cartilage destruction in treated rats relative to rats receiving vehicle alone. A significant reduction in edema, pannus formation, periosteal new bone growth and the numbers of adherent marrow osteoclasts was also noted. However, no significant decrease in polymorphonuclear and mononuclear leukocyte infiltration of synovium and marrow hematopoietic cellularity was seen. This unique profile of antiarthritic activity indicates that GI168 is osteo- and chondro-protective, and it supports a direct role for MMP in cartilage and bone damage and pannus formation in adjuvant- induced arthritis

    Inhalation of β2 agonists impairs the clearance of nontypable Haemophilus influenzae from the murine respiratory tract

    Get PDF
    BACKGROUND: Nontypable Haemophilus influenzae (NTHi) is a common bacterial pathogen causing human respiratory tract infections under permissive conditions such as chronic obstructive pulmonary disease. Inhalation of β2-receptor agonists is a widely used treatment in patients with chronic obstructive pulmonary disease. The aim of this study was to determine the effect of inhalation of β2 agonists on the host immune response to respiratory tract infection with NTHi. METHODS: Mouse alveolar macrophages were stimulated in vitro with NTHi in the presence or absence of the β2 receptor agonists salmeterol or salbutamol. In addition, mice received salmeterol or salbutamol by inhalation and were intranasally infected with NTHi. End points were pulmonary inflammation and bacterial loads. RESULTS: Both salmeterol and salbutamol inhibited NTHi induced tumor necrosis factor-α (TNFα) release by mouse alveolar macrophages in vitro by a β receptor dependent mechanism. In line, inhalation of either salmeterol or salbutamol was associated with a reduced early TNFα production in lungs of mice infected intranasally with NTHi, an effect that was reversed by concurrent treatment with the β blocker propranolol. The clearance of NTHi from the lungs was impaired in mice treated with salmeterol or salbutamol, an adverse effect that was prevented by propranolol and independent of the reduction in TNFα. CONCLUSION: These data suggest that inhalation of salmeterol or salbutamol may negatively influence an effective clearance of NTHi from the airways

    Adiponectin-Mediated Analgesia and AntiInflammatory Effects in Rat

    Get PDF
    The adipose tissue-derived protein, adiponectin, has significant anti-inflammatory properties in a variety of disease conditions. Recent evidence that adiponectin and its receptors (AdipoR1 and AdipoR2) are expressed in central nervous system, suggests that it may also have a central modulatory role in pain and inflammation. This study set out to investigate the effects of exogenously applied recombinant adiponectin (via intrathecal and intraplantar routes; 10–5000 ng) on the development of peripheral inflammation (paw oedema) and pain hypersensitivity in the rat carrageenan model of inflammation. Expression of adiponectin, AdipoR1 and AdipoR2 mRNA and protein was characterised in dorsal spinal cord using real-time polymerase chain reaction (PCR) and Western blotting. AdipoR1 and AdipoR2 mRNA and protein were found to be constitutively expressed in dorsal spinal cord, but no change in mRNA expression levels was detected in response to carrageenan-induced inflammation. Adiponectin mRNA, but not protein, was detected in dorsal spinal cord, although levels were very low. Intrathecal administration of adiponectin, both pre- and 3 hours post-carrageenan, significantly attenuated thermal hyperalgesia and mechanical hypersensitivity. Intrathecal administration of adiponectin post-carrageenan also reduced peripheral inflammation. Intraplantar administration of adiponectin pre-carrageenan dose-dependently reduced thermal hyperalgesia but had no effect on mechanical hypersensitivity and peripheral inflammation. These results show that adiponectin functions both peripherally and centrally at the spinal cord level, likely through activation of AdipoRs to modulate pain and peripheral inflammation. These data suggest that adiponectin receptors may be a novel therapeutic target for pain modulation

    Anti-inflammatory activity of phosphodiesterase (PDE)-IV inhibitors in acute and chronic models of inflammation.

    Get PDF
    Inhibitors of cyclic nucleotide phosphodiesterases are known to suppress lipopolysaccharide (LPS)-induced tumour necrosis factor-alpha (TNF-alpha) production in vitro in human monocytes. The most potent of these have selectivity for type IV PDEs, suggesting that this class of PDE is the major type involved in the regulation of human TNF-alpha production. Using compounds of two distinct chemical structural classes, a quinazolinedione (CP-77059) and a 4 arylpyrrolidinone (rolipram), we show here that PDE-IV-specific inhibitors are also potent in suppressing LPS-induced TNF-alpha production in vitro in sodium periodate-elicited murine macrophages (IC50s of 1 and 33, respectively). We then report the in vivo anti-inflammatory effect of PDE-IV inhibition in five murine models of inflammation: (i) elevation of serum TNF-alpha induced by a sublethal LPS injection; (ii) LPS-induced endotoxic shock; (iii) LPS/galactosamine-induced endotoxic shock; (iv) carrageenan-induced paw oedema; and (v) adjuvant arthritis. Following a sublethal (5 micrograms/mouse) injection of LPS, serum TNF-alpha levels in mice peaked sharply, reaching concentrations of 3-12 ng/ml 90 min after injection. In this sublethal LPS assay, CP-77059 was about 30 times more potent than rolipram, with a minimum effective dose of 0.1 mg/kg versus 3 mg/kg for rolipram. This rank order is in keeping with the relative in vitro IC50s for CP-77059 and rolipram, as well as their relative Ki against the human PDE-IV enzyme (46 nM and 220 nM, respectively). In LPS-induced endotoxic shock, rolipram and CP-77059 at relatively high doses of 30 and 10 mg/kg, respectively, significantly reduced serum TNF-alpha levels, and also inhibited mortality 66%. In the LPS/galactosamine shock model, in which mice are rendered exquisitely sensitive to LPS by co-injection with galactosamine, only 0.1 microgram of LPS/mouse is necessary for serum TNF-alpha elevation and death. Both rolipram and the CP-77059 caused dose-dependent reduction of serum TNF-alpha and lethality. In the carrageenan-induced paw oedema model, in which there is a pronounced local TNF-alpha response (without a serum TNF-alpha elevation), rolipram significantly inhibited paw swelling as well as localized TNF-alpha levels in the paw. In the adjuvant arthritis model, a chronic model of inflammation also possessing localized TNF-alpha elevation in the inflamed paw, rolipram and CP-77059 suppressed ankle swelling and radiological evidence of joint damage. These data are consistent with a major role for PDE-IV in regulation of TNF-alpha production and inflammatory responses in murine systems.(ABSTRACT TRUNCATED AT 400 WORDS

    Inhibitory effects of the beta-adrenergic receptor agonist zilpaterol on the LPS-induced production of TNF-alpha in vitro and in vivo.

    No full text
    Contains fulltext : 32642.pdf (publisher's version ) (Closed access)In this study the anti-inflammatory properties of zilpaterol, a beta2-adrenergic receptor (AR) agonist specifically developed as a growth promoter in cattle were investigated. Although zilpaterol has a different structure compared with the beta2-AR agonists known to date, it was noted that it was able to bind to both the beta2-AR (Ki = 1.1 x 10(-6)) and the beta1-AR (Ki = 1.0 x 10(-5)). Using lipopolysaccharide (LPS)-exposed U937 macrophages, the production of cyclic adenosine-3',5'-cyclic monophosphate (cAMP) and tumor necrosis factor alpha (TNF-alpha) were investigated. Zilpaterol inhibited TNF-alpha release and induced intracellular cAMP levels in a dose-dependent manner. The inhibition of TNF-alpha release and induction of cAMP production was mainly mediated via the beta2-AR, as indicated by addition of beta1- and beta2-specific antagonists. The effects of zilpaterol were investigated in LPS-treated male Wistar rats after pretreatment with zilpaterol. Zilpaterol dosed at 500 microg/kg body weight reduced the TNF-alpha plasma levels. In conclusion, zilpaterol is a beta2-adrenergic agonist and an inhibitor of TNF-alpha production induced by LPS both in vivo and in vitro
    corecore