14 research outputs found

    Transformação de Helmert generalizada no posicionamento de alta precisão: fundamentação teórica e exemplificações

    No full text
    A implantação de um referencial que descreve posições na superfície terrestre, ou próximo a essa, é dividida em duas fases: definição do sistema de referência (Reference System) e sua materialização (Reference Frame). As técnicas de posicionamento que empregam satélites artificiais, como o GPS (Global Positioning System) e o GLONASS (Global Navigation Satellite System), necessitam utilizar referenciais que materializam sistemas de referência bem definidos. Tais técnicas têm sido utilizadas com freqüência em atividades de geodinâmica, pois atendem a exigência quanto a alta precisão dos resultados, essencial nessas aplicações. Para essas técnicas estão disponíveis as realizações do WGS84 (World Geodetic System 1984), do PZ90 (Parametry Zemli 1990) e as várias do ITRS (IERS -International Earth Rotation Service- Terrestrial Reference System). Nestas atividades, freqüentemente, necessita-se comparar soluções materializadas em diferentes referenciais, as quais podem estar associados a diferentes épocas. Para tanto, deve-se empregar a transformação de Helmert generalizada, a qual é apropriada para aplicações tetradimensionais. Neste artigo apresentam-se as características relevantes de tal transformação, os parâmetros de transformação disponíveis e as possíveis versões que ela pode assumir, exemplificando-as com aplicações.The implementation of a referential that describes positions in the terrestrial surface, or near it, is divided in two phases: the definition (Reference System) and the materialization (Reference Frame). The positioning techniques that use artificial satellites, like GPS (Global Positioning System) and GLONASS (Global Navigation Satellite System), need to use reference frames, which materialize well-defined reference systems. These techniques have been used frequently in geodynamics activities, because of the high precision provided, which is essential to these applications. For such techniques are available the realizations of WGS84 (World Geodetic System 1984), of PZ90 (Parametry Zemli 1990) and of the several ITRS (IERS -International Earth Rotation Service- Terrestrial Reference System). In these activities it is frequently needed to compare solutions materialized in different frames, which can be associated to different epochs. For that, it should be used the generalized Helmert transformation which is appropriate for 4D applications. This article presents the most relevant characteristics of this transformation, the available transformation parameters and the possible versions that it can assume, exemplifying them with applications.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Generating VRS data using atmospheric models: How far can we go?

    No full text
    Nowadays, with the expansion of the reference stations networks, several positioning techniques have been developed and/or improved. Among them, the VRS (Virtual Reference Station) concept has been very used. In this paper the goal is to generate VRS data in a modified technique. In the proposed methodology the DD (double difference) ambiguities are not computed. The network correction terms are obtained using only atmospheric (ionospheric and tropospheric) models. In order to carry out the experiments it was used data of five reference stations from the GPS Active Network of West of São Paulo State and an extra station. To evaluate the VRS data quality it was used three different strategies: PPP (Precise Point Positioning) and Relative Positioning in static and kinematic modes, and DGPS (Differential GPS). Furthermore, the VRS data were generated in the position of a real reference station. The results provided by the VRS data agree quite well with those of the real file data

    Atmospheric Models Applied to DGPS and RTK Network in Brazil: Preliminary Results

    No full text
    Several positioning techniques have been developed to explore the GPS capability to provide precise coordinates in real time. However, a significant problem to all techniques is the ionosphere effect and the troposphere refraction. Recent researches in Brazil, at São Paulo State University (UNESP), have been trying to tackle these problems. In relation to the ionosphere effects it has been developed a model named Mod_Ion. Concerning tropospheric refraction, a model of Numerical Weather Prediction(NWP) has been used to compute the zenithal tropospheric delay (ZTD). These two models have been integrated with two positioning methods: DGPS (Differential GPS) and network RTK (Real Time Kinematic). These two positioning techniques are being investigated at São Paulo State University (UNESP), Brazil. The in-house DGPS software was already finalized and has provided very good results. The network RTK software is still under development. Therefore, only preliminary results from this method using the VRS (Virtual Reference Station) concept are presented

    Contribuição de diversos sistemas de observação na previsão de tempo no CPTEC/INPE Contribution of the several observation systems in the forecast skill at CPTEC/INPE

    No full text
    Experimentos utilizando sistemas de observação global, foram realizados excluindo um ou mais tipos de observação do esquema global de assimilação de dados/previsão de tempo do Centro de Previsão de Tempo e Estudos Climáticos do Instituto Nacional de Pesquisas Espaciais - CPTEC/INPE (Global Physical-space Statistical Analysis System - GPSAS). Estes experimentos indicam como efetivamente as observações são usadas no GPSAS. Os sistemas de observação testados foram o conjunto de dados convencionais, que incluem informações de superfície (estações em superfície, bóias, navios e plataformas oceânicas) e de ar superior (radiossondagem, aeronaves e balões piloto), os sistemas de sondagem Advanced TIROS-N/NOAA Operational Vertical Sounder (ATOVS) e AQUA, composto pelos sensores Atmospheric Infrared Sounder e Advanced Microwave Sounding Unit (AIRS/AMSU), dados de vento de satélite, estimados a partir do deslocamento de nuvens (Cloud Track Wind), dados de vento em superfície sobre o oceano (QuikScat) e água precipitável (Total Precipitation water - TPW). Todos os sistemas testados mostram um impacto positivo na qualidade da previsão. Os dados convencionais têm um maior impacto na região do Hemisfério Norte devido à maior disponibilidade dessas informações sobre esta região. Por outro lado, as sondagens AIRS/AMSU são fundamentais para uma boa previsão sobre o Hemisfério Sul. Sobre a América do Sul, os perfis inferidos pelo sistema de sondagem AQUA contribuem com a mesma ordem de grandeza dos dados convencionais e apresentam um impacto positivo para todos os períodos de previsões analisados. Dados de vento e água precipitável estimados por satélites têm maior impacto nas regiões tropical e da América do Sul, nas primeiras horas de previsão (1-3 dias). Todavia, a utilização de um conjunto completo de observações é crucial para se obter, operacionalmente, uma boa condição inicial do estado atmosférico para ser utilizada nos modelos de previsão numérica de tempo do CPTEC/INPE.A series of data withholding experiments was conducted at Center for Weather Forecasting and Climate Studies of the National Institute for Space Research (CPTEC/INPE), with the Global Physical-space Statistical Analysis System (GPSAS) - a combination of the Spectral Atmospheric Global Circulation Model (CPTEC/COLA) with the Physical-space Statistical Analysis System (PSAS). These experiments indicate how efficiently the observations are used in the particular assimilation system. The observation tested were from conventional data (SYNOP, BUOY, SHIP, radiosonde, aircraft, pilot balloons), and satellite data (ATOVS and AIRS/AMSU retrievals, QuikScat wind, Cloud Track Wind and Total Precipitation Water from SSM-I sensor). All observing systems tested have a notable positive impact on the forecast performance. The conventional data have a large impact on North Hemisphere region and it is associated the high density of these information in this region. On the other hand, the AIRS/AMSU retrievals had the largest impact in the Southern Hemisphere. Over the South America, AIRS/AMSU retrievals contribute with the same order of magnitude as conventional data and have a positive impact on all range forecast (1-5 day). Wind and TPW satellite-derived data had the largest impact in the tropical and South America regions at short (1-3 day) range forecast. However, the use of the major observing system it is crucial to obtain operationally a good initial condition of the atmospheric state for initializing of the numerical weather models at CPTEC/INPE

    A dense GNSS meteorological network for observing deep convection in the Amazon

    No full text
    A dense Global Navigation Satellite System (GNSS) meteorological network (∼20 stations) in the central Amazon Basin in Brazil is being developed for long-term studies of deep convection/water vapor interactions and feedback. In this article, the network is described and preliminary results are presented: GNSS-derived precipitable water vapor is useful for tracking water vapor advection and in identifying convective events and water vapor convergence timescales. Upon network completion (early 2011), 3D water vapor field analyses and participation in the intensive field campaign GPM-CHUVA will provide unique data sets for initializing, constraining or validating high-resolution models or refining convective parameterizations. © 2011 Royal Meteorological Society
    corecore