930 research outputs found

    Water-rich bending faults at the Middle America Trench

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 16 (2015): 2582–2597, doi:10.1002/2015GC005927.The portion of the Central American margin that encompasses Nicaragua is considered to represent an end-member system where multiple lines of evidence point to a substantial flux of subducted fluids. The seafloor spreading fabric of the incoming Cocos plate is oriented parallel to the trench such that flexural bending at the outer rise optimally reactivates a dense network of normal faults that extend several kilometers into the upper mantle. Bending faults are thought to provide fluid pathways that lead to serpentinization of the upper mantle. While geophysical anomalies detected beneath the outer rise have been interpreted as broad crustal and upper mantle hydration, no observational evidence exists to confirm that bending faults behave as fluid pathways. Here we use seafloor electromagnetic data collected across the Middle America Trench (MAT) offshore of Nicaragua to create a comprehensive electrical resistivity image that illuminates the infiltration of seawater along bending faults. We quantify porosity from the resistivity with Archie's law and find that our estimates for the abyssal plain oceanic crust are in good agreement with independent observations. As the Cocos crust traverses the outer rise, the porosity of the dikes and gabbros progressively increase from 2.7% and 0.7% to 4.8% and 1.7%, peaking within 20 km of the trench axis. We conclude that the intrusive crust subducts twice as much pore water as previously thought, significantly raising the flux of fluid to the seismogenic zone and the mantle wedge.This work was supported by National Science Foundation grants OCE-0841114 and OCE-0840894, and the Seafloor Electromagnetic Methods Consortium at Scripps Institution of Oceanography.2016-02-1

    Porosity and fluid budget of a water-rich megathrust revealed with electromagnetic data at the Middle America Trench

    Get PDF
    Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 17 (2016): 4495–4516, doi:10.1002/2016GC006556.At convergent margins, the distribution of fluids released from the downgoing slab modulates the state of stress and seismic coupling at the megathrust plate interface. However, existing geophysical data are unable to quantify the porosity along this interface. Here we use controlled-source electromagnetic data collected across the Middle America Trench offshore Nicaragua to image the electrical conductivity structure of the outer fore arc. Our results detect a highly conductive channel, inferred to be the region around the décollement, showing the entire section of water-rich seafloor sediments underthrust with the subducting lithosphere. We use an empirical model of the electrical conductivity of porous media to quantify the channel porosity. Our estimates are consistent with sediment compaction studies, showing a rapid decay of 65%–10% porosity from the trench to 25 km landward. We constrain the channel thickness and use the porosity estimates to determine the water budget, which represents the fraction taken up by fluid. The porosity and water budget estimates show significant lateral variations that we attribute to changes in subducted sediment thickness caused by outer rise bending faults. Between 18 and 23 km from the trench, the conductive channel broadens greatly to 1.5–2 km thick, possibly due to concentrated blind faults or sediment underplating, which suggests a sudden change in hydrogeologic structure at the plate interface. The impact of the anomalous conductor on the seismic coupling and mechanical properties of the megathrust is potentially related to the discrepancy in estimated fault slip between seismic and tsunami source inversions for the 1992 Nicaragua tsunami earthquake.National Science Foundation Grant Numbers: OCE-0841114 , OCE-0840894; Scripps Institution of Oceanography2017-05-1

    Long Days Enhance Recognition Memory and Increase Insulin-like Growth Factor 2 in the Hippocampus

    Get PDF
    Light improves cognitive function in humans; however, the neurobiological mechanisms underlying positive effects of light remain unclear. One obstacle is that most rodent models have employed lighting conditions that cause cognitive deficits rather than improvements. Here we have developed a mouse model where light improves cognitive function, which provides insight into mechanisms underlying positive effects of light. To increase light exposure without eliminating daily rhythms, we exposed mice to either a standard photoperiod or a long day photoperiod. Long days enhanced long-term recognition memory, and this effect was abolished by loss of the photopigment melanopsin. Further, long days markedly altered hippocampal clock function and elevated transcription of Insulin-like Growth Factor2 (Igf2). Up-regulation of Igf2 occurred in tandem with suppression of its transcriptional repressor Wilm’s tumor1. Consistent with molecular de-repression of Igf2, IGF2 expression was increased in the hippocampus before and after memory training. Lastly, long days occluded IGF2-induced improvements in recognition memory. Collectively, these results suggest that light changes hippocampal clock function to alter memory, highlighting novel mechanisms that may contribute to the positive effects of light. Furthermore, this study provides insight into how the circadian clock can regulate hippocampus-dependent learning by controlling molecular processes required for memory consolidation

    Multi-user detection for multi-carrier communication systems

    Get PDF
    Doctor of PhilosophyDepartment of Electrical and Computer EngineeringBalasubramaniam NatarajanWireless broadband communications is a rapidly growing industry. New enabling technologies such as multi-carrier code division multiple access (MC-CDMA) are shaping the future of wireless systems. However, research efforts in improving MC-CDMA receiver performance have received limited attention and there is a need for innovative receiver designs for next generation MC-CDMA. In this thesis, we propose novel multi-user detection (MUD) schemes to enhance the performance of both synchronous and asynchronous MC-CDMA. First, we adapt the ant colony optimization (ACO) approach to solve the optimal MUD problem in MC-CDMA systems. Our simulations indicate that the ACO based MUD converges to the optimal BER performance in relatively few iterations providing more that 95% savings in computational complexity. Second, we propose a new MUD structure specifically for asynchronous MC-CDMA. Previously proposed MUDs for asynchronous MC-CDMA perform the detection for one user (desired user) at a time, mandating multiple runs of the algorithm to detect all users' symbols. In this thesis, for the first time we present a MUD structure that detects all users' symbols simultaneously in one run by extending the receiver's integration window to capture the energy scattered in two consecutive symbol durations. We derive the optimal, decorrelator and minimum mean square error (MMSE) MUD for the extended window case. Our simulations demonstrate that the proposed MUD structures not only perform similar to a MUD that detects one user at a time, but its computational complexity is significantly lower. Finally, we extend the MUD ideas to multicarrier implementation of single carrier systems. Specifically, we employ the novel MUD structure as a multi-symbol detection scheme in CI-CDMA and illustrate the resulting performance gain via simulations

    NEW DIRECTIONS IN ONLINE COMMUNITY RESEARCH

    Get PDF
    Information Systems researchers have studied multiple forms of online communities for decades. Significant progress has been made in addressing research questions such as how and when individuals are motivated to contribute knowledge in online settings. Yet, not only are important questions unanswered—such as why online communities succeed or fail—but also there still remains disagreement on the basic definition of online community. Furthermore, as the diversity of users and uses of online media continues to increase, IS researchers can now ask and answer different questions. For example, advances in social computing, mobile computing, and social media support new forms of online communities. In this panel we will propose and debate the direction of an online community research agenda for the next decade and beyond

    The tetraplex (CGG)n destabilizing proteins hnRNP A2 and CBF-A enhance the in vivo translation of fragile X premutation mRNA

    Get PDF
    Expansion of a (CGG)n sequence in the 5′-UTR of the FMR1 gene to >200–2000 repeats abolishes its transcription and initiates fragile X syndrome (FXS). By contrast, levels of FMR1 mRNA are 5–10-fold higher in FXS premutation carriers of >55–200 repeats than in normal subjects. Lack of a corresponding increase in the amount of the product FMRP protein in carrier cells suggest that (CGG)>55–200 tracts thwart translation. Here we report that a (CGG)99 sequence positioned upstream to reporter firefly (FL) gene selectively diminished mRNA translation in coupled and separate T7 promoter-driven in vitro transcription and translation systems. The (CGG)99 tract similarly depressed mRNA utilization in HEK293 human cells transfected with plasmids bearing FMR1 promoter-driven FL gene. A (CGG)33 RNA tract formed a largely RNase T1-resistant intramolecular secondary structure in the presence of K+ ions. Expression of the quadruplex (CGG)n disrupting proteins hnRNP A2 or CBF-A in HEK293 cells significantly elevated the efficacy of (CGG)99 FL mRNA translation whereas hnRNP A2 or CBF-A mutants lacking quadruplex (CGG)n disrupting activity did not. Taken together, our results suggest that secondary structures of (CGG)n in mRNA obstruct its translation and that quadruplex-disrupting proteins alleviate the translational block

    Parametrised Complexity of Model Checking and Satisfiability in Propositional Dependence Logic

    Get PDF
    In this paper, we initiate a systematic study of the parametrised complexity in the field of Dependence Logics which finds its origin in the Dependence Logic of V\"a\"an\"anen from 2007. We study a propositional variant of this logic (PDL) and investigate a variety of parametrisations with respect to the central decision problems. The model checking problem (MC) of PDL is NP-complete. The subject of this research is to identify a list of parametrisations (formula-size, treewidth, treedepth, team-size, number of variables) under which MC becomes fixed-parameter tractable. Furthermore, we show that the number of disjunctions or the arity of dependence atoms (dep-arity) as a parameter both yield a paraNP-completeness result. Then, we consider the satisfiability problem (SAT) showing a different picture: under team-size, or dep-arity SAT is paraNP-complete whereas under all other mentioned parameters the problem is in FPT. Finally, we introduce a variant of the satisfiability problem, asking for teams of a given size, and show for this problem an almost complete picture.Comment: Update includes refined result
    • …
    corecore