3,209 research outputs found

    An all-optical event horizon in an optical analogue of a Laval nozzle

    Full text link
    Exploiting the fact that light propagation in defocusing nonlinear media can mimic the transonic flow of an equivalent fluid, we demonstrate experimentally the formation of an all-optical event horizon in a waveguide structure akin to a hydrodynamic Laval nozzle. The analogue event horizon, which forms at the nozzle throat is suggested as a novel platform for analogous gravity experiments

    Anomalous mass dependence of radiative quark energy loss in a finite-size quark-gluon plasma

    Full text link
    We demonstrate that for a finite-size quark-gluon plasma the induced gluon radiation from heavy quarks is stronger than that for light quarks when the gluon formation length becomes comparable with (or exceeds) the size of the plasma. The effect is due to oscillations of the light-cone wave function for the in-medium qgqq\to gq transition. The dead cone model by Dokshitzer and Kharzeev neglecting quantum finite-size effects is not valid in this regime. The finite-size effects also enhance the photon emission from heavy quarks.Comment: 8 pages, 3 figure

    Base pair opening and bubble transport in a DNA double helix induced by a protein molecule in a viscous medium

    Full text link
    We study the nonlinear dynamics of a protein-DNA molecular system by treating DNA as a set of two coupled linear chains and protein in the form of a single linear chain sliding along the DNA at the physiological temperature in a viscous medium. The nonlinear dynamics of the above molecular system in general is governed by a perturbed nonlinear Schr\"{o}dinger equation. In the non-viscous limit, the equation reduces to the completely integrable nonlinear Schr\"{o}dinger (NLS) equation which admits N-soliton solutions. The soliton excitations of the DNA bases make localized base pair opening and travel along the DNA chain in the form of a bubble. This may represent the bubble generated during the transcription process when an RNA-polymerase binds to a promoter site in the DNA double helical chain. The perturbed NLS equation is solved using a perturbation theory by treating the viscous effect due to surrounding as a weak perturbation and the results show that the viscosity of the solvent in the surrounding damps out the amplitude of the soliton.Comment: 4. Submitted to Phys. Rev.

    Weak Wave Turbulence Scaling Theory for Diffusion and Relative Diffusion in Turbulent Surface Waves

    Get PDF
    We examine the applicability of the weak wave turbulence theory in explaining experimental scaling results obtained for the diffusion and relative diffusion of particles moving on turbulent surface waves. For capillary waves our theoretical results are shown to be in good agreement with experimental results, where a distinct crossover in diffusive behavior is observed at the driving frequency. For gravity waves our results are discussed in the light of ocean wave studies.Comment: 5 pages; for related work visit http://www.imedea.uib.es/~victo

    Collapse and stable self-trapping for Bose-Einstein condensates with 1/r^b type attractive interatomic interaction potential

    Full text link
    We consider dynamics of Bose-Einstein condensates with long-range attractive interaction proportional to 1/rb1/r^b and arbitrary angular dependence. It is shown exactly that collapse of Bose-Einstein condensate without contact interactions is possible only for b2b\ge 2. Case b=2b=2 is critical and requires number of particles to exceed critical value to allow collapse. Critical collapse in that case is strong one trapping into collapsing region a finite number of particles. Case b>2b>2 is supercritical with expected weak collapse which traps rapidly decreasing number of particles during approach to collapse. For b<2b<2 singularity at r=0r=0 is not strong enough to allow collapse but attractive 1/rb1/r^b interaction admits stable self-trapping even in absence of external trapping potential

    Induced photon emission from quark jets in ultrarelativistic heavy-ion collisions

    Full text link
    We study the induced photon bremsstrahlung from a fast quark produced in AA-collisions due to multiple scattering in quark-gluon plasma. For RHIC and LHC conditions the induced photon spectrum is sharply peaked at photon energy close to the initial quark energy. In this region the contribution of the induced radiation to the photon fragmentation function exceeds the ordinary vacuum radiation. Contrary to previous analyses our results show that at RHIC and LHC energies the final-state interaction effects in quark-gluon plasma do not suppress the direct photon production, and even may enhance it at p_{T} about 5-15 GeV.Comment: 11 pages, 4 figure

    Stability of Bose-Einstein Condensates Confined in Traps

    Full text link
    Bose-Einstein condensation has been realized in dilute atomic vapors. This achievement has generated immerse interest in this field. Presented is a review of recent theoretical research into the properties of trapped dilute-gas Bose-Einstein condensates. Among them, stability of Bose-Einstein condensates confined in traps is mainly discussed. Static properties of the ground state are investigated by use of the variational method. The anlysis is extended to the stability of two-component condensates. Time-development of the condensate is well-described by the Gross-Pitaevskii equation which is known in nonlinear physics as the nonlinear Schr\"odinger equation. For the case that the inter-atomic potential is effectively attractive, a singularity of the solution emerges in a finite time. This phenomenon which we call collapse explains the upper bound for the number of atoms in such condensates under traps.Comment: 74 pages with 12 figures, submitted to the review section of International Journal of Modern Physics

    Dark solitons as quasiparticles in trapped condensates

    Full text link
    We present a theory of dark soliton dynamics in trapped quasi-one-dimensional Bose-Einstein condensates, which is based on the local density approximation. The approach is applicable for arbitrary polynomial nonlinearities of the mean-field equation governing the system as well as to arbitrary polynomial traps. In particular, we derive a general formula for the frequency of the soliton oscillations in confining potentials. A special attention is dedicated to the study of the soliton dynamics in adiabatically varying traps. It is shown that the dependence of the amplitude of oscillations {\it vs} the trap frequency (strength) is given by the scaling law X0ωγX_0\propto\omega^{-\gamma} where the exponent γ\gamma depends on the type of the two-body interactions, on the exponent of the polynomial confining potential, on the density of the condensate and on the initial soliton velocity. Analytical results obtained within the framework of the local density approximation are compared with the direct numerical simulations of the dynamics, showing remarkable match. Various limiting cases are addressed. In particular for the slow solitons we computed a general formula for the effective mass and for the frequency of oscillations.Comment: 16 pages, 4 figures. To appear in Phys. Rev.

    Statistical Description of Acoustic Turbulence

    Full text link
    We develop expressions for the nonlinear wave damping and frequency correction of a field of random, spatially homogeneous, acoustic waves. The implications for the nature of the equilibrium spectral energy distribution are discussedComment: PRE, Submitted. REVTeX, 16 pages, 3 figures (not included) PS Source of the paper with figures avalable at http://lvov.weizmann.ac.il/onlinelist.htm

    Partially integrable systems in multidimensions by a variant of the dressing method. 1

    Full text link
    In this paper we construct nonlinear partial differential equations in more than 3 independent variables, possessing a manifold of analytic solutions with high, but not full, dimensionality. For this reason we call them ``partially integrable''. Such a construction is achieved using a suitable modification of the classical dressing scheme, consisting in assuming that the kernel of the basic integral operator of the dressing formalism be nontrivial. This new hypothesis leads to the construction of: 1) a linear system of compatible spectral problems for the solution U(λ;x)U(\lambda;x) of the integral equation in 3 independent variables each (while the usual dressing method generates spectral problems in 1 or 2 dimensions); 2) a system of nonlinear partial differential equations in nn dimensions (n>3n>3), possessing a manifold of analytic solutions of dimension (n2n-2), which includes one largely arbitrary relation among the fields. These nonlinear equations can also contain an arbitrary forcing.Comment: 21 page
    corecore