39,124 research outputs found

    The quark-antiquark potential at finite temperature and the dimension two gluon condensate

    Full text link
    A recently proposed phenomenological model, which includes non perturbative effects from dimension two gluon condensates, is applied to analyze the available lattice data for the heavy quark free energy in the deconfined phase of quenched QCD. For large qqˉq\bar{q} separations we recover previous results for the Polyakov loop, exhibiting unequivocal condensate contributions. For the qqˉq\bar{q} potential at finite temperature and finite separation we find that a good overall description of the lattice data can be achieved once the condensate is properly accounted for. In addition, the model predicts a duality between the zero temperature potential as a function of the qqˉq\bar{q} separation, on the one hand, and the quark selfenergy as a function of the temperature, on the other, which turns out to be satisfied to a high degree by the lattice data.Comment: 9 pages, 5 figure

    A list of all integrable 2D homogeneous polynomial potentials with a polynomial integral of order at most 4 in the momenta

    Full text link
    We searched integrable 2D homogeneous polynomial potential with a polynomial first integral by using the so-called direct method of searching for first integrals. We proved that there exist no polynomial first integrals which are genuinely cubic or quartic in the momenta if the degree of homogeneous polynomial potentials is greater than 4.Comment: 22 pages, no figures, to appear in J. Phys. A: Math. Ge

    Low energy universality and scaling of Van der Waals forces

    Full text link
    At long distances interactions between neutral ground state atoms can be described by the Van der Waals potential V(r) =-C6/r^6-C8/r^8 - ... . In the ultra-cold regime atom-atom scattering is dominated by s-waves phase shifts given by an effective range expansion p cot d0 (p) = -1/a0 + r0 p^2/2 + ... in terms of the scattering length a0 and the effective range r0. We show that while for these potentials the scattering length cannot be predicted, the effective range is given by the universal low energy theorem r0 = A + B/a0+ C/a0^2 where A,B and C depend on the dispersion coefficients Cn and the reduced di-atom mass. We confront this formula to about a hundred determinations of r0 and a0 and show why the result is dominated by the leading dispersion coefficient C6. Universality and scaling extends much beyond naive dimensional analysis estimates.Comment: 4 pages, 3 figure

    Multiscale velocity correlation in turbulence: experiments, numerical simulations, synthetic signals

    Get PDF
    Multiscale correlation functions in high Reynolds number experimental turbulence, numerical simulations and synthetic signals are investigated. Fusion Rules predictions as they arise from multiplicative, almost uncorrelated, random processes for the energy cascade are tested. Leading and sub-leading contribution, in the inertial range, can be explained as arising from a multiplicative random process for the energy transfer mechanisms. Two different predictions for correlations involving dissipative observable are also briefly discussed

    Probabilistic Response of Multi-support Structures on Non-uniform Soil Conditions

    Get PDF
    Conventional seismic design criteria take values of internal forced and other response variables as those provided by an envelope to the values of those variables produced by in-phase motion of all supports. In structures extended in plan, such as long bridges, or founded on heterogeneous formations or irregular topography, such as dams, differences in ground motion among different supports may give to differences as compared with those produced by conventional analysis. In this paper ground motion is represented as stochastic process with evolutionary intensity and frequency content. A criterion for determining design responses, based on the variance of the response of the structure is proposed. Proportionality criterion depends on cross-correlations between displacements and accelerations occurring at supports. The proposed criterion is illustrated by applying it to a continuous bridge supported on piles embedded in a variable depth layer of soft clay

    Kinematic study of planetary nebulae in NGC 6822

    Full text link
    By measuring precise radial velocities of planetary nebulae (which belong to the intermediate age population), H II regions, and A-type supergiant stars (which are members of the young population) in NGC 6822, we aim to determine if both types of population share the kinematics of the disk of H I found in this galaxy. Spectroscopic data for four planetary nebulae were obtained with the high spectral resolution spectrograph Magellan Inamori Kyocera Echelle (MIKE) on the Magellan telescope at Las Campanas Observatory. Data for other three PNe and one H II region were obtained from the SPM Catalog of Extragalactic Planetary Nebulae which employed the Manchester Echelle Spectrometer attached to the 2.1m telescope at the Observatorio Astron\'omico Nacional, M\'exico. In the wavelength calibrated spectra, the heliocentric radial velocities were measured with a precision better than 5-6 km s−1^{-1}. Data for three additional H II regions and a couple of A-type supergiant stars were collected from the literature. The heliocentric radial velocities of the different objects were compared to the velocities of the H i disk at the same position. From the analysis of radial velocities it is found that H II regions and A-type supergiants do share the kinematics of the H I disk at the same position, as expected for these young objects. On the contrary, planetary nebula velocities differ significantly from that of the H I at the same position. The kinematics of planetary nebulae is independent from the young population kinematics and it is closer to the behavior shown by carbon stars, which are intermediate-age members of the stellar spheroid existing in this galaxy. Our results are confirming that there are at least two very different kinematical systems in NGC 6822

    On the Neutrality of Flowshop Scheduling Fitness Landscapes

    Get PDF
    Solving efficiently complex problems using metaheuristics, and in particular local searches, requires incorporating knowledge about the problem to solve. In this paper, the permutation flowshop problem is studied. It is well known that in such problems, several solutions may have the same fitness value. As this neutrality property is an important one, it should be taken into account during the design of optimization methods. Then in the context of the permutation flowshop, a deep landscape analysis focused on the neutrality property is driven and propositions on the way to use this neutrality to guide efficiently the search are given.Comment: Learning and Intelligent OptimizatioN Conference (LION 5), Rome : Italy (2011

    Hydrologic Restoration of the Biscayne Bay Coastal Wetlands: mosquito and drainage ditch inventory and recommendations

    Get PDF
    The management and restoration of the Biscayne Bay Coastal Wetlands (BBCW) is a complex issue. Unlike other natural areas under the supervision of the National Park System, the BBCW had endured many years of neglect and abuse by homesteaders who, prior to the establishment of Biscayne National Monument in 1968, had free reign of the area and tried to farm and develop the land by ditching and infilling. Furthermore, public works projects, dating back to the early 1900’s for mosquito control, land reclamation, and storm surge protection along with homesteader activities have combined to compartmentalize the coastal wetlands of present Biscayne National Park and adjacent marshes
    • …
    corecore