2,290 research outputs found
Unhappiness, health and cognitive ability in old age
Background To test whether scores on depression inventories on entry to a longitudinal study predict mental ability over the next 4ā16 years. Method Associations between scores on the Beck Depression Inventory and on tests of intelligence, vocabulary and memory were analysed in 5070 volunteers aged 49ā93 years after differences in prescribed drug consumption, death and drop-out, sex, socio-economic advantage and recruitment cohort effects had also been considered. Results On all cognitive tasks Beck scores on entry, even in the range 0ā7 indicating differences in above average contentment, affected overall levels of cognitive performance but not rates of age-related cognitive decline suggesting effects of differences in life satisfaction rather than in depression. Conclusions A new finding is that, in old age, increments in life satisfaction are associated with better cognitive performance. Implications for interpreting associations between depression inventory scores and cognitive performance in elderly samples are discussed
Voltage control of magnetocrystalline anisotropy in ferromagnetic - semiconductor/piezoelectric hybrid structures
We demonstrate dynamic voltage control of the magnetic anisotropy of a
(Ga,Mn)As device bonded to a piezoelectric transducer. The application of a
uniaxial strain leads to a large reorientation of the magnetic easy axis which
is detected by measuring longitudinal and transverse anisotropic
magnetoresistance coefficients. Calculations based on the mean-field
kinetic-exchange model of (Ga,Mn)As provide microscopic understanding of the
measured effect. Electrically induced magnetization switching and detection of
unconventional crystalline components of the anisotropic magnetoresistance are
presented, illustrating the generic utility of the piezo voltage control to
provide new device functionalities and in the research of micromagnetic and
magnetotransport phenomena in diluted magnetic semiconductors.Comment: Submitted to Physical Review Letters. Updates version 1 to include a
more detailed discussion of the effect of strain on the anisotropic
magnetoresistanc
Charge Density Wave in Two-Dimensional Electron Liquid in Weak Magnetic Field
We study the ground state of a clean two-dimensional electron liquid in a
weak magnetic field where lower Landau levels are completely filled
and the upper level is partially filled. It is shown that the electrons at the
upper Landau level form domains with filling factor equal to one and zero. The
domains alternate with a spatial period of order of the cyclotron radius, which
is much larger than the interparticle distance at the upper Landau level. The
one-particle density of states, which can be probed by tunneling experiments,
is shown to have a pseudogap linearly dependent on the magnetic field in the
limit of large .Comment: Several errors correcte
Absence of Scaling in the Integer Quantum Hall Effect
We have studied the conductivity peak in the transition region between the
two lowest integer Quantum Hall states using transmission measurements of edge
magnetoplasmons. The width of the transition region is found to increase
linearly with frequency but remains finite when extrapolated to zero frequency
and temperature. Contrary to prevalent theoretical pictures, our data does not
show the scaling characteristics of critical phenomena.These results suggest
that a different mechanism governs the transition in our experiment.Comment: Minor changes and new references include
Non-Universal Behavior of Finite Quantum Hall Systems as a Result of Weak Macroscopic Inhomogeneities
We show that, at low temperatures, macroscopic inhomogeneities of the
electron density in the interior of a finite sample cause a reduction in the
measured conductivity peak heights compared to the
universal values previously predicted for infinite homogeneous samples. This
effect is expected to occur for the conductivity peaks measured in standard
experimental geometries such as the Hall bar and the Corbino disc. At the
lowest temperatures, the decrease in is found to
saturate at values proportional to the difference between the adjacent plateaus
in , with a prefactor which depends on the particular realization
of disorder in the sample. We argue that this provides a possible explanation
of the ``non-universal scaling'' of observed in a
number of experiments. We also predict an enhancement of the ``non-local''
resistance due to the macroscopic inhomogeneities. We argue that, in the Hall
bar with a sharp edge, the enhanced ``non-local'' resistance and the size
corrections to the ``local'' resistance are directly related. Using
this relation, we suggest a method by which the finite-size corrections may be
eliminated from and in this case.Comment: REVTEX 3.0 file (38 pages) + 5 postscript figures in uuencoded
format. Revised version includes an additional figure showing unpublished
experimental dat
Collapse of Spin-Splitting in the Quantum Hall Effect
It is known experimentally that at not very large filling factors the
quantum Hall conductivity peaks corresponding to the same Landau level number
and two different spin orientations are well separated. These peaks occur
at half-integer filling factors and so that
the distance between them is unity. As increases
shrinks. Near certain two peaks abruptly merge into a single peak at
. We argue that this collapse of the spin-splitting at low
magnetic fields is attributed to the disorder-induced destruction of the
exchange enhancement of the electron -factor. We use the mean-field approach
to show that in the limit of zero Zeeman energy experiences a
second-order phase transition as a function of the magnetic field. We give
explicit expressions for in terms of a sample's parameters. For example,
we predict that for high-mobility heterostructures where is the spacer width, is the density of the
two-dimensional electron gas, and is the two-dimensional density of
randomly situated remote donors.Comment: 14 pages, compressed Postscript fil
Optical, magneto-optical properties and fiber-drawing ability of tellurite glasses in the TeO2-ZnO-BaO ternary system
The presented work is focused on the optical and magneto-optical
characterization of TeO2-ZnO-BaO (TZB) tellurite glasses. We investigated the
refractive index and extinction coefficient dispersion by spectroscopic
ellipsometry from ultraviolet, 0.193 um, up to mid infrared, 25 um spectral
region. Studied glasses exhibited large values of linear (n632 = 1.91-2.09) and
non-linear refractive index (n2 = 1.20-2.67x10-11 esu), Verdet constant (V632 =
22-33 radT-1m-1) and optical band gap energy (Eg = 3.7-4.1 eV). The materials
characterization revealed that BaO substitution by ZnO leads (at constant
content of TeO2) to an increase in linear and nonlinear refractive index as
well as Verdet constant while the optical band gap energy decreases. Fiber
drawing ability of TeO2-ZnO-BaO glassy system has been demonstrated on
60TeO2-20ZnO-20BaO glass with presented mid infrared attenuation coefficient.
Specific parameters such as dispersion and single oscillator energy, Abbe
number, and first-/ third-order optical susceptibility are enclosed together
with the values of magneto-optic anomaly derived from the calculation of
measured dispersion of the refractive index
- ā¦