2,737 research outputs found

    Abell 754: A Non-Head On Collision of Subclusters

    Full text link
    We have analyzed spatially resolved spectra of A754 obtained with ASCA. The combination of spectral and imaging capabilities of ASCA has set unprecedented constraints on the hydrodynamical effects of a cluster merger. We find significant gas temperature variations over the cluster face, indicating shock heating of the atmosphere during the merger. The hottest region, >12 keV, is located in the region of the Northwest galaxy clump though the entire region along the cluster axis appears to be hotter than the mean cluster temperature (~9 keV). The cool, ~5 keV gas originally found with the HEAO1-A2 experiment, resides in the exterior of the cluster atmosphere and in plume of gas we identify with a stripped cool atmosphere of the infalling subcluster. We have also attempted to reconstruct an iron abundance map of this merging system. Though poorly constrained, no significant deviations of abundance from the mean value are apparent in the individual regions. A754 is the only cluster so far which shows the significant temperature pattern expected in a subcluster merger, in both the ROSAT (Henry & Briel 1995) and ASCA data, providing the first possibility to compare it with theoretical predictions. The observed temperature and surface brightness maps suggest that the two colliding subunits have missed each other by about 1 Mpc, and are now moving perpendicular to the cluster axis in the image plane (as, e.g., in the simulations by Evrard etal 1996).Comment: Latex, 10 pages, 3 figures incl. color plate, uses aaspp4.sty, flushrt.sty and pstricks.sty. Submitted to ApJ Letter

    Disorder mediated splitting of the cyclotron resonance in two-dimensional electron systems

    Full text link
    We perform a direct study of the magnitude of the anomalous splitting in the cyclotron resonance (CR) of a two-dimensional electron system (2DES) as a function of sample disorder. In a series of AlGaAs/GaAs quantum wells, identical except for a range of carbon doping in the well, we find the CR splitting to vanish at high sample mobilities but to increase dramatically with increasing impurity density and electron scattering rates. This observation lends strong support to the conjecture that the non-zero wavevector, roton-like minimum in the dispersion of 2D magnetoplasmons comes into resonance with the CR, with the two modes being coupled via disorder.Comment: accepted to PRB Rapid Com

    Acoustic phonon scattering in a low density, high mobility AlGaN/GaN field effect transistor

    Full text link
    We report on the temperature dependence of the mobility, μ\mu, of the two-dimensional electron gas in a variable density AlGaN/GaN field effect transistor, with carrier densities ranging from 0.4×1012\times10^{12} cm−2^{-2} to 3.0×1012\times10^{12} cm−2^{-2} and a peak mobility of 80,000 cm2^{2}/Vs. Between 20 K and 50 K we observe a linear dependence μac−1=α\mu_{ac}^{-1} = \alphaT indicating that acoustic phonon scattering dominates the temperature dependence of the mobility, with α\alpha being a monotonically increasing function of decreasing 2D electron density. This behavior is contrary to predictions of scattering in a degenerate electron gas, but consistent with calculations which account for thermal broadening and the temperature dependence of the electron screening. Our data imply a deformation potential D = 12-15 eV.Comment: 3 pages, 2 figures, RevTeX. Submitted to Appl Phys Let

    Interaction-induced shift of the cyclotron resonance of graphene using infrared spectroscopy

    Full text link
    We report a study of the cyclotron resonance (CR) transitions to and from the unusual n=0n=0 Landau level (LL) in monolayer graphene. Unexpectedly, we find the CR transition energy exhibits large (up to 10%) and non-monotonic shifts as a function of the LL filling factor, with the energy being largest at half-filling of the n=0n=0 level. The magnitude of these shifts, and their magnetic field dependence, suggests that an interaction-enhanced energy gap opens in the n=0n=0 level at high magnetic fields. Such interaction effects normally have limited impact on the CR due to Kohn's theorem [W. Kohn, Phys. Rev. {\bf 123}, 1242 (1961)], which does not apply in graphene as a consequence of the underlying linear band structure.Comment: 4 pages, 4 figures. Version 2, edited for publication. Includes a number of edits for clarity; also added a paragraph contrasting our work w/ previous CR expts. in 2D Si and GaA

    The final fate of spherical inhomogeneous dust collapse II: Initial data and causal structure of singularity

    Full text link
    Further to results in [9], pointing out the role of initial density and velocity distributions towards determining the final outcome of spherical dust collapse, the causal structure of singularity is examined here in terms of evolution of the apparent horizon. We also bring out several related features which throw some useful light towards understanding the nature of this singularity, including the behaviour of geodesic families coming out and some aspects related to the stability of singularity.Comment: Latex file, uses epsf.sty, 15 pages and 3 eps figures. Paragraph on role of smooth functions rewritten. Four references added. To appear in Classical & Quantum Gravit

    On Universal Halos and the Radial Orbit Instability

    Get PDF
    The radial orbit instability drives dark matter halos toward a universal structure. This conclusion, first noted by Huss, Jain, and Steinmetz, is explored in detail through a series of numerical experiments involving the collapse of an isolated halo into the non-linear regime. The role played by the radial orbit instability in generating the density profile, shape, and orbit structure is carefully analyzed and, in all cases, the instability leads to universality independent of initial conditions. New insights into the underlying physics of the radial orbit instability are presented.Comment: 31 pages, 11 figures, submitted to the Astrophysical Journa

    Electrostatically confined Quantum Rings in bilayer Graphene

    Full text link
    We propose a new system where electron and hole states are electrostatically confined into a quantum ring in bilayer graphene. These structures can be created by tuning the gap of the graphene bilayer using nanostructured gates or by position-dependent doping. The energy levels have a magnetic field (B0B_{0}) dependence that is strikingly distinct from that of usual semiconductor quantum rings. In particular, the eigenvalues are not invariant under a B0→−B0B_0 \to -B_0 transformation and, for a fixed total angular momentum index mm, their field dependence is not parabolic, but displays two minima separated by a saddle point. The spectra also display several anti-crossings, which arise due to the overlap of gate-confined and magnetically-confined states.Comment: 5 pages, 6 figures, to appear in Nano Letter

    Cyclotron motion in graphene

    Full text link
    We investigate cyclotron motion in graphene monolayers considering both the full quantum dynamics and its semiclassical limit reached at high carrier energies. Effects of zitterbewegung due to the two dispersion branches of the spectrum dominate the irregular quantum motion at low energies and are obtained as a systematic correction to the semiclassical case. Recent experiments are shown to operate in the semiclassical regime.Comment: 6 pages, 1 figure include

    Lignocellulose Conversion via Catalytic Transformations Yields Methoxyterephthalic Acid Directly from Sawdust

    Get PDF
    Poly(ethylene terephthalate) polyester represents the most common class of thermoplastic polymers widely used in the textile, bottling, and packaging industries. Terephthalic acid and ethylene glycol, both of petrochemical origin, are polymerized to yield the polyester. However, an earlier report suggests that polymerization of methoxyterephthalic acid with ethylene glycol provides a methoxy-polyester with similar properties. Currently, there are no established biobased synthetic routes toward the methoxyterephthalic acid monomer. Here, we show a viable route to the dicarboxylic acid from various tree species involving three catalytic steps. We demonstrate that sawdust can be converted to valuable aryl nitrile intermediates through hydrogenolysis, followed by an efficient fluorosulfation–catalytic cyanation sequence (>90%) and then converted to methoxyterephthalic acid by hydrolysis and oxidation. A preliminary polymerization result indicates a methoxy-polyester with acceptable thermal properties

    Tracing the Mass during Low-Mass Star Formation. II. Modelling the Submillimeter Emission from Pre-Protostellar Cores

    Get PDF
    We have modeled the emission from dust in pre-protostellar cores, including a self-consistent calculation of the temperature distribution for each input density distribution. Model density distributions include Bonnor-Ebert spheres and power laws. The Bonnor-Ebert spheres fit the data well for all three cores we have modeled. The dust temperatures decline to very low values (\Td \sim 7 K) in the centers of these cores, strongly affecting the dust emission. Compared to earlier models that assume constant dust temperatures, our models indicate higher central densities and smaller regions of relatively constant density. Indeed, for L1544, a power-law density distribution, similar to that of a singular, isothermal sphere, cannot be ruled out. For the three sources modeled herein, there seems to be a sequence of increasing central condensation, from L1512 to L1689B to L1544. The two denser cores, L1689B and L1544, have spectroscopic evidence for contraction, suggesting an evolutionary sequence for pre-protostellar cores.Comment: 22 pages, 9 figures, Ap. J. accepted, uses emulateapj5.st
    • …
    corecore