57,877 research outputs found
Thermo electronic laser energy conversion
The thermo electronic laser energy converter (TELEC) is described and compared to the Waymouth converter and the conventional thermionic converter. The electrical output characteristics and efficiency of TELEC operation are calculated for a variety of design variables. Calculations and results are briefly outlined. It is shown that the TELEC concept can potentially convert 25 to 50 percent of incident laser radiation into electric power at high power densities and high waste heat rejection temperatures
Stability of three neutrino flavor conversion in supernovae
Neutrino-neutrino interactions can lead to collective flavor conversion in
the dense parts of a core collapse supernova. Growing instabilities that lead
to collective conversions have been studied intensely in the limit of
two-neutrino species and occur for inverted mass ordering in the case of a
perfectly spherical supernova. We examine two simple models of colliding and
intersecting neutrino beams and show, that for three neutrino species
instabilities exist also for normal mass ordering even in the case of a fully
symmetric system. Whereas the instability for inverted mass ordering is
associated with , the new instability we find for normal mass
ordering is associated with . As a consequence, the growth
rate of these new instabilities for normal ordering is smaller by about an
order of magnitude compared to the rates of the well studied case of inverted
ordering.Comment: 18 pages, 5 figures Minor update on the consistency of the formulae
and prefactors, actualized plot
The plasmatron: Advanced mode thermionic energy conversion
A theory of the plasmatron was developed. Also, a wide range of measurements were obtained with two versatile, research devices. To gain insight into plasmatron performance, the experimental results are compared with calculations based on the theoretical model of plasmatron operation. Results are presented which show that the plasma arc drop of the conventional arc (ignited) mode converter can be suppressed by use of an auxiliary ion source. The improved performance, however, is presently limited to low current densities because of voltage losses due to plasma resistance. This resistance loss could be suppressed by an increase in the plasma electron temperature or a decrease in spacing. Plasmatron performance characteristics for both argon and cesium are reported. The argon plasmatron has superior performance. Results are also presented for magnetic cutoff effects and for current distributing effects. These are shown to be important factors for the design of practical devices
Temperature equilibration in a fully ionized plasma: electron-ion mass ratio effects
Brown, Preston, and Singleton (BPS) produced an analytic calculation for
energy exchange processes for a weakly to moderately coupled plasma: the
electron-ion temperature equilibration rate and the charged particle stopping
power. These precise calculations are accurate to leading and next-to-leading
order in the plasma coupling parameter, and to all orders for two-body quantum
scattering within the plasma. Classical molecular dynamics can provide another
approach that can be rigorously implemented. It is therefore useful to compare
the predictions from these two methods, particularly since the former is
theoretically based and the latter numerically. An agreement would provide both
confidence in our theoretical machinery and in the reliability of the computer
simulations. The comparisons can be made cleanly in the purely classical
regime, thereby avoiding the arbitrariness associated with constructing
effective potentials to mock up quantum effects. We present here the classical
limit of the general result for the temperature equilibration rate presented in
BPS. We examine the validity of the m_electron/m_ion --> 0 limit used in BPS to
obtain a very simple analytic evaluation of the long-distance, collective
effects in the background plasma.Comment: 14 pages, 4 figures, small change in titl
Grain boundary melting in ice
We describe an optical scattering study of grain boundary premelting in water
ice. Ubiquitous long ranged attractive polarization forces act to suppress
grain boundary melting whereas repulsive forces originating in screened Coulomb
interactions and classical colligative effects enhance it. The liquid enhancing
effects can be manipulated by adding dopant ions to the system. For all
measured grain boundaries this leads to increasing premelted film thickness
with increasing electrolyte concentration. Although we understand that the
interfacial surface charge densities and solute concentrations can
potentially dominate the film thickness, we can not directly measure them
within a given grain boundary. Therefore, as a framework for interpreting the
data we consider two appropriate dependent limits; one is dominated by
the colligative effect and one is dominated by electrostatic interactions.Comment: 6 pages, 5 figure
- …