6,671 research outputs found
Two-photon absorption and broadband optical limiting with bis-donor stilbenes
Large two-photon absorptivities are reported for symmetrical bis-donor stilbene derivatives with dialkylamino or diphenylamino groups. These molecules exhibit strong optical limiting of nanosecond pulses over a broad spectral range in the visible. Relative to bis(di-n-butylamino)stilbene, bis(diphenylamino)stilbene exhibits a 90-nm red shift of its optical limiting band but only a minimal shift of ~13 nm of its lowest one-photon electronic absorption band. Mixtures of these compounds offer an unprecedented combination of broad optical limiting bandwidth and high linear transparency
Notification of pesticide poisoning in the western Cape, 1987 - 1991
There is a paucity of data on pesticide-related morbidity and mortality in South Africa. A review of notifications to the western Cape office of the Department of National Health and Population Development from 1987 to 1991 was undertaken to describe the epidemiological profile of pesticide poisoning in the region. Two hundred and twenty five cases of pesticide poisoning were identified, of which the majority were from rural areas. Farmers, farm workers and their families were most frequently involved in poisoning events, which included accidents arising outside of workplace production (44%), self-inflicted injury (35%) and direct occupational contamination (11%). Farm pesticide stores were the most frequent source of pesticide and a seasonal variation in the trend of poisoning events could be discerned; this corresponded to agricultural spraying practices in the region. The mortality rate was significantly higher among those with self-inflicted injury, particularly farm workers. A concurrent review of hospital admissions for 1991 found that 78% of cases had not been notified. In view of the key role of surveillance in reducing pesticide-related morbidity and mortality, a call is made to improve notification of pesticide poisoning so as to facilitate control of an important potential public health problem
Ecological Impacts of Invasive Species
Nearly 6,500 nonnative species are present in the United States and are responsible for the extinction of over 760 native species. The introduction of invasive species is ongoing and the ecological ramifications of these invasions are diverse but could include competition between invasive and native species, disruption of natural ecological processes, and reduced ecosystem services. While invasive species are able to severely damage vital ecosystems, there are methods of predicting and lessening the impacts. Our goal is to educate our campus community about the impact of invasive species on native ecosystems, including the dangers of invasive species, and how we can prevent future invasions. To accomplish this, we conducted an extensive literature review to examine how invasive species are controlled and managed, and how current preventative measures can be improved upon. We hypothesize that a greater focus on successful preventative measurements will reflect a decrease in overall human transportation and the spread of invasive species. The connection between conservation and invasive species plays an important role in understanding and implementing preventative actions in ecosystems that are potentially susceptible to invasive species and is critical to protecting and maintaining biodiversity on our planet
Numerical test of the damping time of layer-by-layer growth on stochastic models
We perform Monte Carlo simulations on stochastic models such as the
Wolf-Villain (WV) model and the Family model in a modified version to measure
mean separation between islands in submonolayer regime and damping time
of layer-by-layer growth oscillations on one dimension. The
stochastic models are modified, allowing diffusion within interval upon
deposited. It is found numerically that the mean separation and the damping
time depend on the diffusion interval , leading to that the damping time is
related to the mean separation as for the WV model
and for the Family model. The numerical results are in
excellent agreement with recent theoretical predictions.Comment: 4 pages, source LaTeX file and 5 PS figure
Physical Activity Minimum Threshold Predicting Improved Function in Adults With Lower‐Extremity Symptoms
Objective
To identify an evidence‐based minimum physical activity threshold to predict improved or sustained high function for adults with lower‐extremity joint symptoms. Methods
Prospective multisite data from 1,629 adults, age ≥49 years with symptomatic lower‐extremity joint pain/aching/stiffness, participating in the Osteoarthritis Initiative accelerometer monitoring substudy were clinically assessed 2 years apart. Improved/high function in 2‐year gait speed and patient‐reported outcomes (PROs) were based on improving or remaining in the best (i.e., maintaining high) function quintile compared to baseline status. Optimal thresholds predicting improved/high function were investigated using classification trees for the legacy federal guideline metric requiring 150 minutes/week of moderate‐vigorous (MV) activity in bouts lasting 10 minutes or more (MV‐bout) and other metrics (total MV, sedentary, light intensity activity, nonsedentary minutes/week). Results
Optimal thresholds based on total MV minutes/week predicted improved/high function outcomes more strongly than the legacy or other investigated metrics. Meeting the 45 total MV minutes/week threshold had increased relative risk (RR) for improved/high function (gait speed RR 1.8, 95% confidence interval [95% CI] 1.6, 2.1 and PRO physical function RR 1.4, 95% CI 1.3, 1.6) compared to less active adults. Thresholds were consistent across sex, body mass index, knee osteoarthritis status, and age. Conclusion
These results supported a physical activity minimum threshold of 45 total MV minutes/week to promote improved or sustained high function for adults with lower‐extremity joint symptoms. This evidence‐based threshold is less rigorous than federal guidelines (≥150 MV‐bout minutes/week) and provides an intermediate goal towards the federal guideline for adults with lower‐extremity symptoms
Nucleosomal arrangement affects single-molecule transcription dynamics.
In eukaryotes, gene expression depends on chromatin organization. However, how chromatin affects the transcription dynamics of individual RNA polymerases has remained elusive. Here, we use dual trap optical tweezers to study single yeast RNA polymerase II (Pol II) molecules transcribing along a DNA template with two nucleosomes. The slowdown and the changes in pausing behavior within the nucleosomal region allow us to determine a drift coefficient, χ, which characterizes the ability of the enzyme to recover from a nucleosomal backtrack. Notably, χ can be used to predict the probability to pass the first nucleosome. Importantly, the presence of a second nucleosome changes χ in a manner that depends on the spacing between the two nucleosomes, as well as on their rotational arrangement on the helical DNA molecule. Our results indicate that the ability of Pol II to pass the first nucleosome is increased when the next nucleosome is turned away from the first one to face the opposite side of the DNA template. These findings help to rationalize how chromatin arrangement affects Pol II transcription dynamics
Diazotroph Activity in Surface Narragansett Bay Sediments in Summer is Stimulated by Hypoxia and Organic Matter Delivery
Bacteria that carry out many processes of the nitrogen cycle inhabit estuarine sediments. Denitrification is known to be a dominant process causing estuarine sediments to behave as net nitrogen sinks. However, measurements of nitrogen fluxes in the sediments of Narragansett Bay, Rhode Island, USA, have at times revealed high rates of net nitrogen (N2) fixation. Whereas changes in primary production, in magnitude and phenology, within Narragansett Bay have been identified as possible causes for these changes in nitrogen cycling within the benthos, a factor that has not been examined thus far is seasonal hypoxia. Since anaerobic diazotrophs figure so prominently within the sediments of Narragansett Bay, we hypothesized that dissolved oxygen concentrations in the bottom waters affect their activity. In order to explore this relationship, we measured the activity of diazotrophs in the surface sediments of 3 study areas during the summers of 2013 and 2014 using the acetylene reduction assay. We explored the effects of several water quality parameters on nitrogenase activity including, among others, dissolved oxygen and chlorophyll concentrations. Our measurements of nitrogenase activity were generally low, ranging between 2 and 5 nmol ethylene g-1 d-1 but spiked to 16 nmol ethylene g-1 d-1 at an area experiencing severe hypoxia in July 2013. Our data suggest that diazotrophy in estuarine sediments is enhanced when the benthos experiences very low dissolved oxygen in conjunction with recent influxes of autochthonous organic matter. Experiments with sediment core incubations conducted in the laboratory support our hypothesis that low dissolved oxygen and organic matter additions promote N2 fixation
Lattice Effects in Crystal Evaporation
We study the dynamics of a stepped crystal surface during evaporation, using
the classical model of Burton, Cabrera and Frank, in which the dynamics of the
surface is represented as a motion of parallel, monoatomic steps. The validity
of the continuum approximation treated by Frank is checked against numerical
calculations and simple, qualitative arguments. The continuum approximation is
found to suffer from limitations related, in particular, to the existence of
angular points. These limitations are often related to an adatom detachment
rate of adatoms which is higher on the lower side of each step than on the
upper side ("Schwoebel effect").Comment: DRFMC/SPSMS/MDN, Centre d'Etudes Nucleaires de Grenoble, 25 pages,
LaTex, revtex style. 8 Figures, available upon request, report# UBFF30119
Mounding Instability and Incoherent Surface Kinetics
Mounding instability in a conserved growth from vapor is analysed within the
framework of adatom kinetics on the growing surface. The analysis shows that
depending on the local structure on the surface, kinetics of adatoms may vary,
leading to disjoint regions in the sense of a continuum description. This is
manifested particularly under the conditions of instability. Mounds grow on
these disjoint regions and their lateral growth is governed by the flux of
adatoms hopping across the steps in the downward direction. Asymptotically
ln(t) dependence is expected in 1+1- dimensions. Simulation results confirm the
prediction. Growth in 2+1- dimensions is also discussed.Comment: 4 pages, 4 figure
- …