1,000 research outputs found

    Non-invasive detection of molecular bonds in quantum dots

    Get PDF
    We performed charge detection on a lateral triple quantum dot with star-like geometry. The setup allows us to interpret the results in terms of two double dots with one common dot. One double dot features weak tunnel coupling and can be understood with atom-like electronic states, the other one is strongly coupled forming molecule-like states. In nonlinear measurements we identified patterns that can be analyzed in terms of the symmetry of tunneling rates. Those patterns strongly depend on the strength of interdot tunnel coupling and are completely different for atomic- or molecule-like coupled quantum dots allowing the non-invasive detection of molecular bonds.Comment: 4 pages, 4 figure

    Towards visualisation of central-cell-effects in scanning-tunnelling-microscope images of subsurface dopant qubits in silicon

    Full text link
    Atomic-scale understanding of phosphorous donor wave functions underpins the design and optimisation of silicon based quantum devices. The accuracy of large-scale theoretical methods to compute donor wave functions is dependent on descriptions of central-cell-corrections, which are empirically fitted to match experimental binding energies, or other quantities associated with the global properties of the wave function. Direct approaches to understanding such effects in donor wave functions are of great interest. Here, we apply a comprehensive atomistic theoretical framework to compute scanning tunnelling microscopy (STM) images of subsurface donor wave functions with two central-cell-correction formalisms previously employed in the literature. The comparison between central-cell models based on real-space image features and the Fourier transform profiles indicate that the central-cell effects are visible in the simulated STM images up to ten monolayers below the silicon surface. Our study motivates a future experimental investigation of the central-cell effects via STM imaging technique with potential of fine tuning theoretical models, which could play a vital role in the design of donor-based quantum systems in scalable quantum computer architectures.Comment: Nanoscale 201

    Two path transport measurements on a triple quantum dot

    Get PDF
    We present an advanced lateral triple quantum dot made by local anodic oxidation. Three dots are coupled in a starlike geometry with one lead attached to each dot thus allowing for multiple path transport measurements with two dots per path. In addition charge detection is implemented using a quantum point contact. Both in charge measurements as well as in transport we observe clear signatures of states from each dot. Resonances of two dots can be established allowing for serial transport via the corresponding path. Quadruple points with all three dots in resonance are prepared for different electron numbers and analyzed concerning the interplay of the simultaneously measured transport along both paths.Comment: 4 pages, 4 figure

    Dopant metrology in advanced FinFETs

    Full text link
    Ultra-scaled FinFET transistors bear unique fingerprint-like device-to-device differences attributed to random single impurities. This paper describes how, through correlation of experimental data with multimillion atom tight-binding simulations using the NEMO 3-D code, it is possible to identify the impurity's chemical species and determine their concentration, local electric field and depth below the Si/SiO2_{\mathrm{2}} interface. The ability to model the excited states rather than just the ground state is the critical component of the analysis and allows the demonstration of a new approach to atomistic impurity metrology.Comment: 6 pages, 3 figure

    Engineered valley-orbit splittings in quantum confined nanostructures in silicon

    Get PDF
    An important challenge in silicon quantum electronics in the few electron regime is the potentially small energy gap between the ground and excited orbital states in 3D quantum confined nanostructures due to the multiple valley degeneracies of the conduction band present in silicon. Understanding the "valley-orbit" (VO) gap is essential for silicon qubits, as a large VO gap prevents leakage of the qubit states into a higher dimensional Hilbert space. The VO gap varies considerably depending on quantum confinement, and can be engineered by external electric fields. In this work we investigate VO splitting experimentally and theoretically in a range of confinement regimes. We report measurements of the VO splitting in silicon quantum dot and donor devices through excited state transport spectroscopy. These results are underpinned by large-scale atomistic tight-binding calculations involving over 1 million atoms to compute VO splittings as functions of electric fields, donor depths, and surface disorder. The results provide a comprehensive picture of the range of VO splittings that can be achieved through quantum engineering.Comment: 4 pages, 4 figure

    Valley filtering and spatial maps of coupling between silicon donors and quantum dots

    Get PDF
    Exchange coupling is a key ingredient for spin-based quantum technologies since it can be used to entangle spin qubits and create logical spin qubits. However, the influence of the electronic valley degree of freedom in silicon on exchange interactions is presently the subject of important open questions. Here we investigate the influence of valleys on exchange in a coupled donor/quantum dot system, a basic building block of recently proposed schemes for robust quantum information processing. Using a scanning tunneling microscope tip to position the quantum dot with sub-nm precision, we find a near monotonic exchange characteristic where lattice-aperiodic modulations associated with valley degrees of freedom comprise less than 2~\% of exchange. From this we conclude that intravalley tunneling processes that preserve the donor's ±x\pm x and ±y\pm y valley index are filtered out of the interaction with the ±z\pm z valley quantum dot, and that the ±x\pm x and ±y\pm y intervalley processes where the electron valley index changes are weak. Complemented by tight-binding calculations of exchange versus donor depth, the demonstrated electrostatic tunability of donor/QD exchange can be used to compensate the remaining intravalley ±z\pm z oscillations to realise uniform interactions in an array of highly coherent donor spins.Comment: 6 pages, 4 figures, 6 pages Supplemental Materia

    Gate induced g-factor control and dimensional transition for donors in multi-valley semiconductors

    Get PDF
    The dependence of the g-factors of semiconductor donors on applied electric and magnetic fields is of immense importance in spin based quantum computation and in semiconductor spintronics. The donor g-factor Stark shift is sensitive to the orientation of the electric and magnetic fields and strongly influenced by the band-structure and spin-orbit interactions of the host. Using a multimillion atom tight-binding framework the spin-orbit Stark parameters are computed for donors in multi-valley semiconductors, silicon and germanium. Comparison with limited experimental data shows good agreement for a donor in silicon. Results for gate induced transition from 3D to 2D wave function confinement show that the corresponding g-factor shift in Si is experimentally observable.Comment: 4 pages, 4 figure

    Lifetime enhanced transport in silicon due to spin and valley blockade

    Get PDF
    We report the observation of Lifetime Enhanced Transport (LET) based on perpendicular valleys in silicon by transport spectroscopy measurements of a two-electron system in a silicon transistor. The LET is manifested as a peculiar current step in the stability diagram due to a forbidden transition between an excited state and any of the lower energy states due perpendicular valley (and spin) configurations, offering an additional current path. By employing a detailed temperature dependence study in combination with a rate equation model, we estimate the lifetime of this particular state to exceed 48 ns. The two-electron spin-valley configurations of all relevant confined quantum states in our device were obtained by a large-scale atomistic tight-binding simulation. The LET acts as a signature of the complicated valley physics in silicon; a feature that becomes increasingly important in silicon quantum devices.Comment: 4 pages, 4 figures. (The current version (v3) is the result of splitting up the previous version (v2), and has been completely rewritten
    • …
    corecore