10 research outputs found

    Deep Reinforcement Learning for Robotic Approaching Behavior Influenced by User Activity and Disengagement

    Get PDF
    A robot intended to monitor human behavior must account for the user's reactions to minimize his/her perceived discomfort. The possibility of learning user interaction preferences and changing the robot's behavior accordingly may positively impact the perceived quality of the interaction with the robot. The robot should approach the user without causing any discomfort or interference. In this work, we contribute and implement a novel Reinforcement Learning (RL) approach for robot navigation toward a human user. Our implementation is a proof-of-concept that uses data gathered from real-world experiments to show that our algorithm works on the kind of data that it would run on in a realistic scenario. To the best of our knowledge, our work is one of the first attempts to provide an adaptive navigation algorithm that uses RL to account for non-deterministic phenomena

    Socially Assistive Robot's Behaviors using Microservices

    No full text
    In this work, we introduce a set of robot's behavior aimed at being used for monitoring and interaction with elderly people affected by Alzheimer disease. Robot's behaviors for a low cost robotic device rely on the use of microservices running on a local server. A microservice is an independent, self-contained, self-scope, and self-responsibility component of the robotic system proposed for decoupling the implemented functions needed to obtain the proper robot behaviors. The developed robotic behaviors include navigation, interaction, and monitoring capabilities. The requests and the signals of the patients are handled and managed relying on event-based communications between the system components. The use of design patterns like this one increases the overall reliability of a service composition. The system is currently operating in a private house with an elderly couple

    Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction

    No full text
    Microglia are highly motile glial cells that are proposed to mediate synaptic pruning during neuronal circuit formation. Disruption of signaling between microglia and neurons leads to an excess of immature synaptic connections, thought to be the result of impaired phagocytosis of synapses by microglia. However, until now the direct phagocytosis of synapses by microglia has not been reported and fundamental questions remain about the precise synaptic structures and phagocytic mechanisms involved. Here we used light sheet fluorescence microscopy to follow microglia–synapse interactions in developing organotypic hippocampal cultures, complemented by a 3D ultrastructural characterization using correlative light and electron microscopy (CLEM). Our findings define a set of dynamic microglia–synapse interactions, including the selective partial phagocytosis, or trogocytosis (trogo-: nibble), of presynaptic structures and the induction of postsynaptic spine head filopodia by microglia. These findings allow us to propose a mechanism for the facilitatory role of microglia in synaptic circuit remodeling and maturation

    Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction

    No full text
    Microglia are highly motile glial cells that are proposed to mediate synaptic pruning during neuronal circuit formation. Disruption of signaling between microglia and neurons leads to an excess of immature synaptic connections, thought to be the result of impaired phagocytosis of synapses by microglia. However, until now the direct phagocytosis of synapses by microglia has not been reported and fundamental questions remain about the precise synaptic structures and phagocytic mechanisms involved. Here we used light sheet fluorescence microscopy to follow microglia–synapse interactions in developing organotypic hippocampal cultures, complemented by a 3D ultrastructural characterization using correlative light and electron microscopy (CLEM). Our findings define a set of dynamic microglia–synapse interactions, including the selective partial phagocytosis, or trogocytosis (trogo-: nibble), of presynaptic structures and the induction of postsynaptic spine head filopodia by microglia. These findings allow us to propose a mechanism for the facilitatory role of microglia in synaptic circuit remodeling and maturation

    Lithium Directs Embryonic Stem Cell Differentiation Into Hemangioblast‐Like Cells

    No full text
    [EN] Definitive hematopoietic stem cells (HSCs) derive from specialized regions of the endothelium known as the hemogenic endothelium (HE) during embryonic developmental processes. This knowledge opens up new possibilities for designing new strategies to obtain HSCs in vitro from pluripotent stem cells (PSCs). Previous advances in this field show that the Wnt/beta-catenin signaling pathway plays a crucial role in PSC-derived HSC formation. In this work, lithium, a GSK3 inhibitor, is identified as an element capable of stabilizing beta-catenin and inducing embryonic stem cells (ESCs) differentiation in hemangioblast-like cells, highly consistent with the role of Wnt agonists on ESC differentiation. ESCs treated with 10 mm lithium express CD31+, SCA-1+, Nkx2-5+, CD34+, and FLK1+ cells characteristic of the hemangioblast cells that precede HE development. However, 10 mm Li treated cells remain arrested in a hemangioblast-like phase, which switched into the expression of HE markers after stimulation with maturation medium. The ability of lithium-treated ESCs to further derive into HE is confirmed after defined maturation, resulting in a rapid increase in cells positive for the HE markers RUNX1 and SOX17. The results represent a novel strategy for generating HSC precursors in vitro as a multipotent source of stem cells for blood disease therapies.P.R. acknowledges support from the Spanish Ministry of Science, Innovation, and Universities (RTI2018-096794), and Fondo Europeo de Desarrollo Regional (FEDER). CIBER-BBN was an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. M.S.-S. acknowledges support from the UK Engineering and Physical Sciences Research Council (EPSRC - EP/P001114/1Mnatsakanyan, H.; Salmerón Sánchez, M.; Rico Tortosa, PM. (2021). Lithium Directs Embryonic Stem Cell Differentiation Into Hemangioblast-Like Cells. Advanced Biosystems. 5(8):1-10. https://doi.org/10.1002/adbi.2020005691105

    GRAd-COV2, a gorilla adenovirus-based candidate vaccine against COVID-19, is safe and immunogenic in younger and older adults

    No full text
    Safe and effective vaccines against coronavirus disease 2019 (COVID-19) are essential for ending the ongoing pandemic. Although impressive progress has been made with several COVID-19 vaccines already approved, it is clear that those developed so far cannot meet the global vaccine demand alone. We describe a COVID-19 vaccine based on a replication-defective gorilla adenovirus expressing the stabilized prefusion severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein named GRAd-COV2. We assessed the safety and immunogenicity of a single-dose regimen of this vaccine in healthy younger and older adults to select the appropriate dose for each age group. For this purpose, a phase 1, dose-escalation, open-labeled trial was conducted including 90 healthy participants (45 aged 18 to 55 years old and 45 aged 65 to 85 years old) who received a single intramuscular administration of GRAd-COV2 at three escalating doses. Local and systemic adverse reactions were mostly mild or moderate and of short duration, and no serious adverse events were reported. Four weeks after vaccination, seroconversion to spike protein and receptor binding domain was achieved in 43 of 44 young volunteers and in 45 of 45 older participants. Consistently, neutralizing antibodies were detected in 42 of 44 younger-age and 45 of 45 older-age volunteers. In addition, GRAd-COV2 induced a robust and T helper 1 cell (TH1)-skewed T cell response against the spike protein in 89 of 90 participants from both age groups. Overall, the safety and immunogenicity data from the phase 1 trial support the further development of this vaccine
    corecore