52,857 research outputs found

    Simple quantum model for light depolarization

    Full text link
    Depolarization of quantum fields is handled through a master equation of the Lindblad type. The specific feature of the proposed model is that it couples dispersively the field modes to a randomly distributed atomic reservoir, much in the classical spirit of dealing with this problem. The depolarizing dynamics resulting from this model is analyzed for relevant states.Comment: Improved version. Accepted for publication in the Journal of the Optical Society of America

    Multiple light scattering and optomechanical forces

    Get PDF
    When off-resonant light travels through a transparent medium, light scattering is the primary optical process to occur. Multiple-particle events are relatively rare in optically dilute systems: scattering generally takes place at individual atomic or molecular centers. Several well-known phenomena result from such single-center interactions, including Rayleigh and Raman scattering, and the optomechanical forces responsible for optical tweezers. Other, less familiar effects may arise in circumstances where throughput radiation is able to simultaneously engage with two or more scattering sites in close, nanoscale, proximity. Exhibiting the distinctive near-field electromagnetic character, inter-particle interactions such as optical binding and a variety of inelastic bimolecular processes can then occur. Although the theory for each two-center process is well established, the connectivity of their mechanisms has not received sufficient attention. To address this deficiency, and to consider the issues that ensue, it is expedient to represent the various forms of multi-particle light scattering in terms of transitions between different radiation states. The corresponding quantum amplitudes, registering the evolution of photon trajectories through the material system, can be calculated using the tools of quantum electrodynamics. Each of the potential outcomes for multi-particle scattering generates a set of amplitudes corresponding to different orderings of the constituent photon-matter interactions. Performing the necessary sums over quantum pathways between radiation states is expedited by a state-sequence development, this formalism also enabling the identification of intermediate states held in common by different paths. The results reveal the origin and consequences of linear momentum conservation, and they also offer new insights into the behavior of light between closely neighboring scattering events. © 2010 Society of Photo-Optical Instrumentation Engineers

    On the Stability of Stochastic Parametrically Forced Equations with Rank One Forcing

    Full text link
    We derive simplified formulas for analyzing the stability of stochastic parametrically forced linear systems. This extends the results in [T. Blass and L.A. Romero, SIAM J. Control Optim. 51(2):1099--1127, 2013] where, assuming the stochastic excitation is small, the stability of such systems was computed using a weighted sum of the extended power spectral density over the eigenvalues of the unperturbed operator. In this paper, we show how to convert this to a sum over the residues of the extended power spectral density. For systems where the parametric forcing term is a rank one matrix, this leads to an enormous simplification.Comment: 16 page
    corecore