26,496 research outputs found
Experimental measurements of unsteady turbulent boundary layers near separation
Investigations conducted to document the behavior of turbulent boundary layers on flat surfaces that separate due to adverse pressure gradients are reported. Laser and hot wire anemometers measured turbulence and flow structure of a steady free stream separating turbulent boundary layer produced on the flow of a wind tunnel section. The effects of sinusoidal and unsteadiness of the free stream velocity on this separating turbulent boundary layer at a reduced frequency were determined. A friction gage and a thermal tuft were developed and used to measure the surface skin friction and the near wall fraction of time the flow moves downstream for several cases. Abstracts are provided of several articles which discuss the effects of the periodic free stream unsteadiness on the structure or separating turbulent boundary layers
An experimental study of the properties of surface pressure fluctuations in strong adverse pressure gradient turbulent boundary layers
Experimental data were obtained on blade self-noise generation by strong adverse-pressure-gradient attached boundary layers and by separated turbulent boundary layers that accompany stall. Two microphones were calibrated, placed in plastic housing, and installed in a wind tunnel where observations of acoustic and turbulent signals permitted decomposition of the surface pressure fluctuation signals into the propagated acoustic part and the turbulent-flow generated portion. To determine the convective wave speed of the turbulent contributions, the microphones were spaced a small distance apart in the streamwise direction and correlations were obtained. The turbulent surface pressure spectra upstream of detachment and downstream of the beginning of separation are discussed as well as measurements of turbulent velocity spectra and wavespeeds
Increasing innovative activity in the UK? Where now for government support for innovation and technology transfer?
In this Briefing Note, we present new evidence on the UK’s innovative performance and provide a summary of government business support programmes aimed at fostering innovative activity and technology transfer. Following recent reviews of policy in this area, there remain a number of such schemes in operation. We discuss the rationales for each, including the extent to which they overlap, and suggest some ways in which evidence on take-up and on effectiveness might be used to guide any future policy changes in this area
Investigation of blown boundary layers with an improved wall jet system
The behavior of two dimensional incompressible turbulent wall jets submerged in a boundary layer when they are used to prevent boundary layer separation on plane surfaces is investigated. The experimental set-up and instrumentation are described. Experimental results of zero pressure gradient flow and adverse pressure gradient flow are presented. Conclusions are given and discussed
Investigation of blown boundary layers with an improved wall jet system
Measurements were made in a two dimensional incompressible wall jet submerged under a thick upstream boundary layer with a zero pressure gradient and an adverse pressure gradient. The measurements included mean velocity and Reynolds stresses profiles, skin friction, and turbulence spectra. The measurements were confined to practical ratios (less than 2) of the jet velocity to the free stream velocity. The wall jet used in the experiments had an asymmetric velocity profile with a relatively higher concentration of momentum away from the wall. An asymmetric jet velocity profile has distinct advantages over a uniform jet velocity profile, especially in the control of separation. Predictions were made using Irwin's (1974) method for blown boundary layers. The predictions clearly show the difference in flow development between an asymmetric jet velocity profile and a uniform jet velocity profile
The fate of NOx emissions due to nocturnal oxidation at high latitudes: 1-D simulations and sensitivity experiments
The fate of nitrogen oxide pollution during high-latitude winter is controlled by reactions of dinitrogen pentoxide (N2O5) and is highly affected by the competition between heterogeneous atmospheric reactions and deposition to the snowpack. MISTRA (MIcrophysical STRAtus), a 1-D photochemical model, simulated an urban pollution plume from Fairbanks, Alaska to investigate this competition of N2O5 reactions and explore sensitivity to model parameters. It was found that dry deposition of N2O5 made up a significant fraction of N2O5 loss near the snowpack, but reactions on aerosol particles dominated loss of N2O5 over the integrated atmospheric column. Sensitivity experiments found the fate of NOx emissions were most sensitive to NO emission flux, photolysis rates, and ambient temperature. The results indicate a strong sensitivity to urban area density, season and clouds, and temperature, implying a strong sensitivity of the results to urban planning and climate change. Results suggest that secondary formation of particulate (PM2.5) nitrate in the Fairbanks downtown area does not contribute significant mass to the total PM2.5 concentration, but appreciable amounts are formed downwind of downtown due to nocturnal NOx oxidation and subsequent reaction with ammonia on aerosol particles
Surface properties of Galilean satellites from bistatic radar experiments
The icy moons of Jupiter were the first to show unusual radar backscatter behavior in Earth-based experiments. Studies of Europa, Ganymede, and Callisto revealed strong echoes and a reversed sense of circular polarization. No explanations were entirely satisfactory because of the difficult constraints imposed by the existing data. The (scalar) bidirectional coherence model predicts an opposition effect, or enhancement in the backscatter direction, resulting from coherent addition of backscatter from identical (but oppositely directed) ray paths. The mode decoupling model yields a similar, vector result in which the observed polarization properties of the backscattered wave can also be obtained. The possibilities were considered for conducting such experiments using the Galileo spacecraft. Both conventional oblique-forward bistatic experiments (to determine basic electrical and physical properties of the surface material on centimeter-meter scales) and near-backscatter experiments (to sample the enhanced backscatter lobe) were considered
Productivity policy
In this Briefing Note, we first present internationally comparative evidence on the UK's productivity performance (Section 2) and some of the underlying "drivers" of productivity identified by the government (Section 3). We then provide an overview of productivity policy under both Labour governments since 1997, and discuss the recent direction of policy in this 2005 Election Briefing area (Section 4). Finally, we discuss the proposals of the three main parties in the area of productivity policy (Section 5)
A study of microwave downcoverters operating in the K sub u band
A computer program for parametric amplifier design is developed with special emphasis on practical design considerations for microwave integrated circuit degenerate amplifiers. Precision measurement techniques are developed to obtain a more realistic varactor equivalent circuit. The existing theory of a parametric amplifier is modified to include the equivalent circuit, and microwave properties, such as loss characteristics and circuit discontinuities are investigated
Embedded Eigenvalues and the Nonlinear Schrodinger Equation
A common challenge to proving asymptotic stability of solitary waves is
understanding the spectrum of the operator associated with the linearized flow.
The existence of eigenvalues can inhibit the dispersive estimates key to
proving stability. Following the work of Marzuola & Simpson, we prove the
absence of embedded eigenvalues for a collection of nonlinear Schrodinger
equations, including some one and three dimensional supercritical equations,
and the three dimensional cubic-quintic equation. Our results also rule out
nonzero eigenvalues within the spectral gap and, in 3D, endpoint resonances.
The proof is computer assisted as it depends on the sign of certain inner
products which do not readily admit analytic representations. Our source code
is available for verification at
http://www.math.toronto.edu/simpson/files/spec_prop_asad_simpson_code.zip.Comment: 29 pages, 27 figures: fixed a typo in an equation from the previous
version, and added two equations to clarif
- …