3,739 research outputs found
The glass transition and the Coulomb gap in electron glasses
We establish the connection between the presence of a glass phase and the
appearance of a Coulomb gap in disordered materials with strongly interacting
electrons. Treating multiparticle correlations in a systematic way, we show
that in the case of strong disorder a continuous glass transition takes place
whose Landau expansion is identical to that of the Sherrington-Kirkpatrick spin
glass. We show that the marginal stability of the glass phase controls the
physics of these systems: it results in slow dynamics and leads to the
formation of a Coulomb gap
Dielectric susceptibility of the Coulomb-glass
We derive a microscopic expression for the dielectric susceptibility
of a Coulomb glass, which corresponds to the definition used in classical
electrodynamics, the derivative of the polarization with respect to the
electric field. The fluctuation-dissipation theorem tells us that is a
function of the thermal fluctuations of the dipole moment of the system. We
calculate numerically for three-dimensional Coulomb glasses as a
function of temperature and frequency
Persistent Homology in Sparse Regression and its Application to Brain Morphometry
Sparse systems are usually parameterized by a tuning parameter that
determines the sparsity of the system. How to choose the right tuning parameter
is a fundamental and difficult problem in learning the sparse system. In this
paper, by treating the the tuning parameter as an additional dimension,
persistent homological structures over the parameter space is introduced and
explored. The structures are then further exploited in speeding up the
computation using the proposed soft-thresholding technique. The topological
structures are further used as multivariate features in the tensor-based
morphometry (TBM) in characterizing white matter alterations in children who
have experienced severe early life stress and maltreatment. These analyses
reveal that stress-exposed children exhibit more diffuse anatomical
organization across the whole white matter region.Comment: submitted to IEEE Transactions on Medical Imagin
How developmental neuroscience can help address the problem of child poverty
Nearly 1 in 5 children in the United States lives in a household whose income is below the official federal poverty line, and more than 40% of children live in poor or near-poor households. Research on the effects of poverty on children’s development has been a focus of study for many decades and is now increasing as we accumulate more evidence about the implications of poverty. The American Academy of Pediatrics recently added “Poverty and Child Health” to its Agenda for Children to recognize what has now been established as broad and enduring effects of poverty on child development. A recent addition to the field has been the application of neuroscience-based methods. Various techniques including neuroimaging, neuroendocrinology, cognitive psychophysiology, and epigenetics are beginning to document ways in which early experiences of living in poverty affect infant brain development. We discuss whether there are truly worthwhile reasons for adding neuroscience and related biological methods to study child poverty, and how might these perspectives help guide developmentally-based and targeted interventions and policies for these children and their families
Off-equilibrium dynamics of the two-dimensional Coulomb glass
The dynamics of the 2D Coulomb glass model is investigated by kinetic Monte
Carlo simulation. An exponential divergence of the relaxation time signals a
zero-temperature freezing transition. At low temperatures the dynamics of the
system is glassy. The local charge correlations and the response to
perturbations of the local potential show aging. The dynamics of formation of
the Coulomb gap is slow and the density of states at the Fermi level decays in
time as a power law. The relevance of these findings for recent transport
experiments in Anderson-insulating films is pointed out.Comment: 7 pages, 7 figure
2009 Sub-Librarians Meeting: History Detective: Researching the BSI Archival Histories
The Sub-Librarians, members of the Criterion Bar, and local Sherlockians met at Blackie\u27s in Chicago on Sunday, July 12th at 12:00pm. Marsha Pollak, Sub-Librarians, and Allan Devitt of The Criterion Bar Association welcomed the group. The traditional toasts were made: Lomax by Valli Hoski; Sherlock Holmes by Bob Coghill; Hill Barton by George Scheetz; Baron Gruner by Marsha Pollak; and Kitty Winter by Gayle L. Puhl. The featured speaker was Jon L. Lellenberg, presenting History Detective: Researching the BSI Archival Histories.
Lellenberg has written numerous volumes on the history of the Baker Street Irregulars, and presented on his detective work and some of his most interesting discoveries from the BSI\u27s origins and early decades.
View full text of speech.
Local arrangements thanks to Susan Diamond and Allan Devitt of the Criterion Bar Association of Chicago
Universal Crossover between Efros-Shklovskii and Mott Variable-Range-Hopping Regimes
A universal scaling function, describing the crossover between the Mott and
the Efros-Shklovskii hopping regimes, is derived, using the percolation picture
of transport in strongly localized systems. This function is agrees very well
with experimental data. Quantitative comparison with experiment allows for the
possible determination of the role played by polarons in the transport.Comment: 7 pages + 1 figure, Revte
Thermal Properties of Starch from Exotic-by-Adapted Corn (Zea mays L.) Lines Grown in Four Environments
The effect of four growing environments (two at Ames, IA; one at Clinton, IL; and one at Columbia, MO) on the thermal properties of starch from five exotic-by-adapted corn inbred lines (Chis37, Cuba34, Cuba38, Dk8, Dk10) and two control lines (B73 and Mo17) were studied using differential scanning calorimetry (DSC). The variations in thermal properties within environments were similar for the exotic-by-adapted lines and control lines. Missouri was the warmest environment and generally produced starch with the greatest gelatinization onset temperature (ToG), the narrowest range of gelatinization (RG), and the greatest enthalpy of gelatinization (ΔHG). Illinois was the coolest environment and generally resulted in starch with the lowest ToG, widest RG, and lowest ΔHG. These differences were attributed to higher temperatures in Missouri during grain-filling months either increasing the amount of longer branches of amylopectin or perfecting amylopectin crystalline structure. The Ames 1 environment produced starch with thermal properties most similar to those of Illinois, whereas the Ames 2 environment produced starch with thermal properties most similar to those of Missouri. Ames 2, located near a river bottom where temperatures tend to be warmer, likely had temperatures most similar to those found in Missouri during grain filling
- …