196 research outputs found
Extension of holomorphic functions and cohomology classes from non reduced analytic subvarieties
The goal of this survey is to describe some recent results concerning the L 2
extension of holomorphic sections or cohomology classes with values in vector
bundles satisfying weak semi-positivity properties. The results presented here
are generalized versions of the Ohsawa-Takegoshi extension theorem, and borrow
many techniques from the long series of papers by T. Ohsawa. The recent
achievement that we want to point out is that the surjectivity property holds
true for restriction morphisms to non necessarily reduced subvarieties,
provided these are defined as zero varieties of multiplier ideal sheaves. The
new idea involved to approach the existence problem is to make use of L 2
approximation in the Bochner-Kodaira technique. The extension results hold
under curvature conditions that look pretty optimal. However, a major unsolved
problem is to obtain natural (and hopefully best possible) L 2 estimates for
the extension in the case of non reduced subvarieties -- the case when Y has
singularities or several irreducible components is also a substantial issue.Comment: arXiv admin note: text overlap with arXiv:1703.00292,
arXiv:1510.0523
Local syzygies of multiplier ideals
In recent years, multiplier ideals have found many applications in local and
global algebraic geometry. Because of their importance, there has been some
interest in the question of which ideals on a smooth complex variety can be
realized as multiplier ideals. Other than integral closure no local
obstructions have been known up to now, and in dimension two it was established
by Favre-Jonsson and Lipman-Watanabe that any integrally closed ideal is
locally a multiplier ideal. We prove the somewhat unexpected result that
multiplier ideals in fact satisfy some rather strong algebraic properties
involving higher syzygies. It follows that in dimensions three and higher,
multiplier ideals are very special among all integrally closed ideals.Comment: 8 page
Interpolation in non-positively curved K\"ahler manifolds
We extend to any simply connected K\"ahler manifold with non-positive
sectional curvature some conditions for interpolation in and in
the unit disk given by Berndtsson, Ortega-Cerd\`a and Seip. The main tool is a
comparison theorem for the Hessian in K\"ahler geometry due to Greene, Wu and
Siu, Yau.Comment: 9 pages, Late
Extension and approximation of -subharmonic functions
Let be a bounded domain, and let be a
real-valued function defined on the whole topological boundary . The aim of this paper is to find a characterization of the functions
which can be extended to the inside to a -subharmonic function under
suitable assumptions on . We shall do so by using a function algebraic
approach with focus on -subharmonic functions defined on compact sets. We
end this note with some remarks on approximation of -subharmonic functions
The openness conjecture and complex Brunn-Minkowski inequalities
We discuss recent versions of the Brunn-Minkowski inequality in the complex
setting, and use it to prove the openness conjecture of Demailly and Koll\'ar.Comment: This is an account of the results in arXiv:1305.5781 together with
some background material. It is based on a lecture given at the Abel
symposium in Trondheim, June 2013. 13 page
Regularity of Kobayashi metric
We review some recent results on existence and regularity of Monge-Amp\`ere
exhaustions on the smoothly bounded strongly pseudoconvex domains, which admit
at least one such exhaustion of sufficiently high regularity. A main
consequence of our results is the fact that the Kobayashi pseudo-metric k on an
appropriare open subset of each of the above domains is actually a smooth
Finsler metric. The class of domains to which our result apply is very large.
It includes for instance all smoothly bounded strongly pseudoconvex complete
circular domains and all their sufficiently small deformations.Comment: 14 pages, 8 figures - The previously announced main result had a gap.
In this new version the corrected statement is given. To appear on the volume
"Geometric Complex Analysis - Proceedings of KSCV 12 Symposium
Bergman kernel and complex singularity exponent
We give a precise estimate of the Bergman kernel for the model domain defined
by where
is a holomorphic map from to ,
in terms of the complex singularity exponent of .Comment: to appear in Science in China, a special issue dedicated to Professor
Zhong Tongde's 80th birthda
Szeg\"o kernel asymptotics and Morse inequalities on CR manifolds
We consider an abstract compact orientable Cauchy-Riemann manifold endowed
with a Cauchy-Riemann complex line bundle. We assume that the manifold
satisfies condition Y(q) everywhere. In this paper we obtain a scaling
upper-bound for the Szeg\"o kernel on (0, q)-forms with values in the high
tensor powers of the line bundle. This gives after integration weak Morse
inequalities, analogues of the holomorphic Morse inequalities of Demailly. By a
refined spectral analysis we obtain also strong Morse inequalities which we
apply to the embedding of some convex-concave manifolds.Comment: 40 pages, the constants in Theorems 1.1-1.8 have been modified by a
multiplicative constant 1/2 ; v.2 is a final updat
Big Line Bundles over Arithmetic Varieties
We prove a Hilbert-Samuel type result of arithmetic big line bundles in
Arakelov geometry, which is an analogue of a classical theorem of Siu. An
application of this result gives equidistribution of small points over
algebraic dynamical systems, following the work of Szpiro-Ullmo-Zhang. We also
generalize Chambert-Loir's non-archimedean equidistribution
Intersecting Solitons, Amoeba and Tropical Geometry
We study generic intersection (or web) of vortices with instantons inside,
which is a 1/4 BPS state in the Higgs phase of five-dimensional N=1
supersymmetric U(Nc) gauge theory on R_t \times (C^\ast)^2 \simeq R^{2,1}
\times T^2 with Nf=Nc Higgs scalars in the fundamental representation. In the
case of the Abelian-Higgs model (Nf=Nc=1), the intersecting vortex sheets can
be beautifully understood in a mathematical framework of amoeba and tropical
geometry, and we propose a dictionary relating solitons and gauge theory to
amoeba and tropical geometry. A projective shape of vortex sheets is described
by the amoeba. Vortex charge density is uniformly distributed among vortex
sheets, and negative contribution to instanton charge density is understood as
the complex Monge-Ampere measure with respect to a plurisubharmonic function on
(C^\ast)^2. The Wilson loops in T^2 are related with derivatives of the Ronkin
function. The general form of the Kahler potential and the asymptotic metric of
the moduli space of a vortex loop are obtained as a by-product. Our discussion
works generally in non-Abelian gauge theories, which suggests a non-Abelian
generalization of the amoeba and tropical geometry.Comment: 39 pages, 11 figure
- …