2,371 research outputs found

    Investigations on transparent liquid-miscibility gap systems

    Get PDF
    Sedimentation and phase separation is a well known occurrence in monotectic or miscibility gap alloys. Previous investigations indicate that it may be possible to prepare such alloys in a low-gravity space environment but recent experiments indicate that there may be nongravity dependent phase separation processes which can hinder the formation of such alloys. Such phase separation processes are studied using transparent liquid systems and holography. By reconstructing holograms into a commercial-particle-analysis system, real time computer analysis can be performed on emulsions with diameters in the range of 5 micrometers or greater. Thus dynamic effects associated with particle migration and coalescence can be studied. Characterization studies on two selected immiscible systems including an accurate determination of phase diagrams, surface and interfacial tension measurements, surface excess and wetting behavior near critical solution temperatures completed

    Cooperative domain type interlayer sp3sp^3-bond formation in graphite

    Full text link
    Using the classical molecular dynamics and the semiempirical Brenner's potential, we theoretically study the interlayer sigma bond formation, as cooperative and nonlinear phenomena induced by visible light excitations of a graphite crystal. We have found several cases, wherein the excitations of certain lattice sites result in new interlayer bonds even at non-excited sites. We have also found that, a new interlayer bond is easier to be formed around a bond, if it is already existing. As many more sites are going to be excited, the number of interlayer bonds increases nonlinearly with the number of excited sites. This nonlinearity shows 1.7 power of the total number of excited sites, corresponding to about three- or four-photon process.Comment: 7 pages, 8 figure

    Method for detecting coliform organisms

    Get PDF
    A method and apparatus are disclosed for determining the concentration of coliform bacteria in a sample. The sample containing the coliform bacteria is cultured in a liquid growth medium. The cultured bacteria produce hydrogen and the hydrogen is vented to a second cell containing a buffer solution in which the hydrogen dissolves. By measuring the potential change in the buffer solution caused by the hydrogen, as a function of time, the initial concentration of bacteria in the sample is determined. Alternatively, the potential change in the buffer solution can be compared with the potential change in the liquid growth medium to verify that the potential change in the liquid growth medium is produced primarily by the hydrogen gas produced by the coliform bacteria

    Anomalous shell effect in the transition from a circular to a triangular billiard

    Get PDF
    We apply periodic orbit theory to a two-dimensional non-integrable billiard system whose boundary is varied smoothly from a circular to an equilateral triangular shape. Although the classical dynamics becomes chaotic with increasing triangular deformation, it exhibits an astonishingly pronounced shell effect on its way through the shape transition. A semiclassical analysis reveals that this shell effect emerges from a codimension-two bifurcation of the triangular periodic orbit. Gutzwiller's semiclassical trace formula, using a global uniform approximation for the bifurcation of the triangular orbit and including the contributions of the other isolated orbits, describes very well the coarse-grained quantum-mechanical level density of this system. We also discuss the role of discrete symmetry for the large shell effect obtained here.Comment: 14 pages REVTeX4, 16 figures, version to appear in Phys. Rev. E. Qualities of some figures are lowered to reduce their sizes. Original figures are available at http://www.phys.nitech.ac.jp/~arita/papers/tricirc

    Concept of the Critical Nucleus in Nucleation

    Get PDF
    Reconsideration on the concept of critical nucleus for single component systems leads to the result that the size n^h_K of a kinetic critical nucleus for which the probabilities of its decay and growth balance is not equal to the size n^ of the thermodynamic one for which the reversible work of nucleus formation takes the maximum value. n^h_K is in general smaller than n^, and there exist two values for n^h_K, the larger is kinetically unstable but the smaller is stable. The difference between n^ and the larger n^h_K increases but the difference between the two values of n^h_K decreases with the degree of supersaturation or supercooling, and in the critical state two values of n^h_K coincide and it diminishes to 8/27 of n^ for three dimensional homogeneous nucleation and to 1/4 of n^ for two dimensional disc nucleation on a substrate. Beyond this critical state n^h_K does not exist and for a nucleus with any size the probabilty of growth is higher than that of decay

    Theoretical and numerical studies of nucleation kinetics

    Get PDF
    この論文は国立情報学研究所の電子図書館事業により電子化されました。Reconsideration on the concept of critical nucleus for single component systems leads to the result that the size n_k of a kinetic critical nucleus for which the probabilities of its decay and growth balance is not equal to the size n^* of the thermodynamic one for which the reversible work of nucleus formation takes the maximum value. n_k is in general smaller than n^*, and there exist two values for n_k, the larger is kinetically unstable but the smaller is stable. The difference between n^* and the larger n_k increases but the difference between the two values of n_k decreases with supersaturation and or temperature, and at the critical state two values of n_k coincide and it diminishes to 8/27 of n^* for three dimensional homogeneous nucleation and to 1/4 of n^* for two dimensional disc nucleation on a substrate. Beyond this critical state n_k does not exist and for a nucleus with any size the probabilty of growth is higher than that of decay. The height of the nucleation barrier, i.e., the reversible work of critical nucleus formation, is found to be the main parameter quantitatively controlling the distinction between n^* and n_k. It is shown that when the distinction between the two kinds of the critical nuclei is significant, the attachment and the detachment rates of monomers do not differ appreciably

    Numerical Simulation of the Kinetic Critical Nucleus

    Get PDF
    Our main interest is to see whether the number density indicates a peak at the kinetically stable critical nucleus due to its kinetical stability. We have numerically calculated the time evolution of the number densities of clusters in the case of water vapor nucleation. We employ the condition in which the difference between the size of the thermodynamic crtitical nucleus and that of the kinetic one is appreciable. The results show that the peak does not appear in the number densities of clusters. The reason is thought to be that the kinetical stability is not strong enough in our condition

    Zero Order Estimates for Analytic Functions

    Full text link
    The primary goal of this paper is to provide a general multiplicity estimate. Our main theorem allows to reduce a proof of multiplicity lemma to the study of ideals stable under some appropriate transformation of a polynomial ring. In particular, this result leads to a new link between the theory of polarized algebraic dynamical systems and transcendental number theory. On the other hand, it allows to establish an improvement of Nesterenko's conditional result on solutions of systems of differential equations. We also deduce, under some condition on stable varieties, the optimal multiplicity estimate in the case of generalized Mahler's functional equations, previously studied by Mahler, Nishioka, Topfer and others. Further, analyzing stable ideals we prove the unconditional optimal result in the case of linear functional systems of generalized Mahler's type. The latter result generalizes a famous theorem of Nishioka (1986) previously conjectured by Mahler (1969), and simultaneously it gives a counterpart in the case of functional systems for an important unconditional result of Nesterenko (1977) concerning linear differential systems. In summary, we provide a new universal tool for transcendental number theory, applicable with fields of any characteristic. It opens the way to new results on algebraic independence, as shown in Zorin (2010).Comment: 42 page

    Mechanism of killing by virus-induced cytotoxic T lymphocytes elicited in vivo

    Get PDF
    The mechanism of lysis by in vivo-induced cytotoxic T lymphocytes (CTL) was examined with virus-specific CTL from mice infected with lymphocytic choriomeningitis virus (LCMV). LCMV-induced T cells were shown to have greater than 10 times the serine esterase activity of T cells from normal mice, and high levels of serine esterase were located in the LCMV-induced CD8+ cell population. Serine esterase was also induced in purified T-cell preparations isolated from mice infected with other viruses (mouse hepatitis, Pichinde, and vaccinia). In contrast, the interferon inducer poly(I.C) only marginally enhanced serine esterase in T cells. Serine esterase activity was released from the LCMV-induced T cells upon incubation with syngeneic but not allogeneic LCMV-infected target cells. Both cytotoxicity and the release of serine esterase were calcium dependent. Serine esterase released from disrupted LCMV-induced T cells was in the form of the fast-sedimenting particles, suggesting its inclusion in granules. Competitive substrates for serine esterase blocked killing by LCMV-specific CTL, but serine esterase-containing granules isolated from LCMV-induced CTL, in contrast to granules isolated from a rat natural killer cell tumor line, did not display detectable hemolytic activity. Fragmentation of target cell DNA was observed during the lytic process mediated by LCMV-specific CTL, and the release of the DNA label [125I]iododeoxyuridine from target cells and the accompanying fragmentation of DNA also were calcium dependent. These data support the hypothesis that the mechanism of killing by in vivo-induced T cells involves a calcium-dependent secretion of serine esterase-containing granules and a target cell death by a process involving nuclear degradation and DNA fragmentation

    Vibrations and fractional vibrations of rods, plates and Fresnel pseudo-processes

    Full text link
    Different initial and boundary value problems for the equation of vibrations of rods (also called Fresnel equation) are solved by exploiting the connection with Brownian motion and the heat equation. The analysis of the fractional version (of order ν\nu) of the Fresnel equation is also performed and, in detail, some specific cases, like ν=1/2\nu=1/2, 1/3, 2/3, are analyzed. By means of the fundamental solution of the Fresnel equation, a pseudo-process F(t)F(t), t>0t>0 with real sign-varying density is constructed and some of its properties examined. The equation of vibrations of plates is considered and the case of circular vibrating disks CRC_R is investigated by applying the methods of planar orthogonally reflecting Brownian motion within CRC_R. The composition of F with reflecting Brownian motion BB yields the law of biquadratic heat equation while the composition of FF with the first passage time TtT_t of BB produces a genuine probability law strictly connected with the Cauchy process.Comment: 33 pages,8 figure
    corecore