42 research outputs found

    Edge and Bulk Transport in the Mixed State of a Type-II Superconductor

    Full text link
    By comparing the voltage-current (V-I) curves obtained before and after cutting a sample of 2H-NbSe2, we separate the bulk and edge contributions to the transport current at various dissipation levels and derive their respective V- I curves and critical currents. We find that the edge contribution is thermally activated across a current dependent surface barrier. By contrast the bulk V-I curves are linear, as expected from the free flux flow model. The relative importance of bulk and edge contributions is found to depend on dissipation level and sample dimensions. We further show that the peak effect is a sharp bulk phenomenon and that it is broadened by the edge contribution

    Metals in high magnetic field: a new universality class of Fermi liquids

    Full text link
    Parquet equations, describing the competition between superconducting and density-wave instabilities, are solved for a three-dimensional isotropic metal in a high magnetic field when only the lowest Landau level is filled. In the case of a repulsive interaction between electrons, a phase transition to the density-wave state is found at finite temperature. In the opposite case of attractive interaction, no phase transition is found. With decreasing temperature TT, the effective vertex of interaction between electrons renormalizes toward a one-dimensional limit in a self-similar way with the characteristic length (transverse to the magnetic field) decreasing as ln1/6(ωc/T)\ln^{-1/6}(\omega_c/T) (ωc\omega_c is a cutoff). Correlation functions have new forms, previously unknown for conventional one-dimensional or three-dimensional Fermi-liquids.Comment: 13 pages + 4 figures (included

    Effects of Magnetic Order on the Upper Critical Field of UPt3_3

    Full text link
    I present a Ginzburg-Landau theory for hexagonal oscillations of the upper critical field of UPt3_3 near TcT_c. The model is based on a 2D2D representation for the superconducting order parameter, η=(η1,η2)\vec{\eta}=(\eta_1,\eta_2), coupled to an in-plane AFM order parameter, ms\vec{m}_s. Hexagonal anisotropy of Hc2H_{c2} arises from the weak in-plane anisotropy energy of the AFM state and the coupling of the superconducting order parameter to the staggered field. The model explains the important features of the observed hexagonal anisotropy [N. Keller, {\it et al.}, Phys. Rev. Lett. {\bf 73}, 2364 (1994).] including: (i) the small magnitude, (ii) persistence of the oscillations for TTcT\rightarrow T_c, and (iii) the change in sign of the oscillations for T>TT> T^{*} and T<TT< T^{*} (the temperature at the tetracritical point). I also show that there is a low-field crossover (observable only very near TcT_c) below which the oscillations should vanish.Comment: 9 pages in a RevTex (3.0) file plus 2 postscript figures (uuencoded). Submitted to Physical Review B (December 20, 1994)

    Phase Fluctuations and Vortex Lattice Melting in Triplet Quasi-One-Dimensional Superconductors at High Magnetic Fields

    Full text link
    Assuming that the order parameter corresponds to an equal spin triplet pairing symmetry state, we calculate the effect of phase fluctuations in quasi-one-dimensional superconductors at high magnetic fields applied along the y (b') axis. We show that phase fluctuations can destroy the theoretically predicted triplet reentrant superconducting state, and that they are responsible for melting the magnetic field induced Josephson vortex lattice above a magnetic field dependent melting temperature Tm.Comment: 4 pages (double column), 1 eps figur

    Suppression of surface barrier in superconductors by columnar defects

    Full text link
    We investigate the influence of columnar defects in layered superconductors on the thermally activated penetration of pancake vortices through the surface barrier. Columnar defects, located near the surface, facilitate penetration of vortices through the surface barrier, by creating ``weak spots'', through which pancakes can penetrate into the superconductor. Penetration of a pancake mediated by an isolated column, located near the surface, is a two-stage process involving hopping from the surface to the column and the detachment from the column into the bulk; each stage is controlled by its own activation barrier. The resulting effective energy is equal to the maximum of those two barriers. For a given external field there exists an optimum location of the column for which the barriers for the both processes are equal and the reduction of the effective penetration barrier is maximal. At high fields the effective penetration field is approximately two times smaller than in unirradiated samples. We also estimate the suppression of the effective penetration field by column clusters. This mechanism provides further reduction of the penetration field at low temperatures.Comment: 8 pages, 9 figures, submitted to Phys. Rev.

    Lower critical field H_c1 and barriers for vortex entry in Bi_2Sr_2CaCu_2O_{8+delta} crystals

    Get PDF
    The penetration field H_p of Bi_2Sr_2CaCu_2O_{8+delta} crystals is determined from magnetization curves for different field sweep rates dH/dt and temperatures. The obtained results are consistent with theoretical reports in the literature about vortex creep over surface and geometrical barriers. The frequently observed low-temperature upturn of H_p is shown to be related to metastable configurations due to barriers for vortex entry. Data of the true lower critical field H_c1 are presented. The low-temperature dependence of H_c1 is consistent with a superconducting state with nodes in the gap function. [PACS numbers: 74.25.Bt, 74.60.Ec, 74.60.Ge, 74.72.Hs

    Electric field dependence of pairing temperature and tunneling

    Full text link
    Using the Bethe-Salpeter equation including high electric fields, the dependence of the critical temperature of onsetting superconductivity on the applied field is calculated analytically. The critical temperature of pairing is shown to increase with the applied field strength. This is a new field effect and could contribute to the explanation of recent experiments on field induced superconductivity. From the field dependence of the Bethe-Salpeter equation, the two--particle bound state solution is obtained as a resonance with a tunneling probability analogous to the WKB solution of a single particle confined in a potential and coupled to the electrical field.Comment: 4 pages 1 figure, revised version from 29.10.02, Rev. B in pres

    Superconductivity and Antiferromagnetism in Quasi-one-dimensional Organic Conductors

    Get PDF
    We review the current understanding of superconductivity in the quasi-one-dimensional organic conductors of the Bechgaard and Fabre salt families. We discuss the interplay between superconductivity, antiferromagnetism, and charge-density-wave fluctuations. The connection to recent experimental observations supporting unconventional pairing and the possibility of a triplet-spin order parameter for the superconducting phase is also presented.Comment: (v1) 30 pages, 13 figures; Review article for the 20th anniversary of high-Tc superconductivity, to appear in J. Low Temp. Phys. (v2) 1 Ref. adde

    Possible Triplet Electron Pairing and an Anisotropic Spin Susceptibility in Organic Superconductors (TMTSF)_2 X

    Full text link
    We argue that (TMTSF)_2 PF_6 compound under pressure is likely a triplet superconductor with a vector order parameter d(k) \equiv (d_a(k) \neq 0, d_c(k) = ?, d_{b'}(k) = 0); |d_a(k)| > |d_c(k)|. It corresponds to an anisotropic spin susceptibility at T=0: \chi_{b'} = \chi_0, \chi_a \ll \chi_0, where \chi_0 is its value in a metallic phase. [The spin quantization axis, z, is parallel to a so-called b'-axis]. We show that the suggested order parameter explains why the upper critical field along the b'-axis exceeds all paramagnetic limiting fields, including that for a nonuniform superconducting state, whereas the upper critical field along the a-axis (a \perp b') is limited by the Pauli paramagnetic effects [I. J. Lee, M. J. Naughton, G. M. Danner and P. M. Chaikin, Phys. Rev. Lett. 78, 3555 (1997)]. The triplet order parameter is in agreement with the recent Knight shift measurements by I. J. Lee et al. as well as with the early results on a destruction of superconductivity by nonmagnetic impurities and on the absence of the Hebel-Slichter peak in the NMR relaxation rate.Comment: 4 pages, 1 eps figur

    Possible new vortex matter phases in BSCCO

    Full text link
    The vortex matter phase diagram of BSCCO crystals is analyzed by investigating vortex penetration through the surface barrier in the presence of a transport current. The strength of the effective surface barrier, its nonlinearity, and asymmetry are used to identify a possible new ordered phase above the first-order transition. This technique also allows sensitive determination of the depinning temperature. The solid phase below the first-order transition is apparently subdivided into two phases by a vertical line extending from the multicritical point.Comment: 11 pages, 3 figures, accepted for publication in PR
    corecore