1,919 research outputs found

    Dynamic absorption of carbon dioxide on microporous carbons

    Get PDF
    Adsorption of carbon dioxide on microporous carbon

    Analysis of two-dimensional high-energy photoelectron momentum distributions in single ionization of atoms by intense laser pulses

    Get PDF
    We analyzed the two-dimensional (2D) electron momentum distributions of high-energy photoelectrons of atoms in an intense laser field using the second-order strong field approximation (SFA2). The SFA2 accounts for the rescattering of the returning electron with the target ion to first order and its validity is established by comparing with results obtained by solving the time-dependent Schr\"{o}dinger equation (TDSE) for short pulses. By analyzing the SFA2 theory, we confirmed that the yield along the back rescattered ridge (BRR) in the 2D momentum spectra can be interpreted as due to the elastic scattering in the backward directions by the returning electron wave packet. The characteristics of the extracted electron wave packets for different laser parameters are analyzed, including their dependence on the laser intensity and pulse duration. For long pulses we also studied the wave packets from the first and the later returns.Comment: 12 pages, 10 figure

    DNA stabilized silver nanoclusters for ratiometric and visual detection of Hg2+ and its immobilization in hydrogels

    Get PDF
    The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.bios.2013.04.002." © 2013. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/DNA oligomers are particularly interesting templates for making silver nanoclusters (AgNCs) as different emission colors can be obtained by varying the DNA sequence. Many AgNCs have been used as Hg2+ sensors since Hg2+ induces fluorescence quenching. From an analytical chemistry standpoint, however, these ‘light off’ sensors are undesirable. In this work, taking advantage of the fact that some AgNCs are not as effectively quenched by Hg2+, we design a sensor with AgNCs containing two emission peaks. The red peak is strongly quenched by Hg2+ while the green peak shows a concomitant increase, producing an orange-to-green visual fluorescence transformation. Using this AgNC, we demonstrate ratiometric detection with a detection limit of 4 nM Hg2+. This sensor is further immobilized in a hydrogel matrix and this gel is also capable of detecting Hg2+ with a visual response.University of Waterloo || Canadian Foundation for Innovation || Natural Sciences and Engineering Research Council || Ontario Ministry of Research and Innovation |

    Quantitative rescattering theory for laser-induced high-energy plateau photoelectron spectra

    Get PDF
    A comprehensive quantitative rescattering (QRS) theory for describing the production of high-energy photoelectrons generated by intense laser pulses is presented. According to the QRS, the momentum distributions of these electrons can be expressed as the product of a returning electron wave packet with the elastic differential cross sections (DCS) between free electrons with the target ion. We show that the returning electron wave packets are determined mostly by the lasers only, and can be obtained from the strong field approximation. The validity of the QRS model is carefully examined by checking against accurate results from the solution of the time-dependent Schr\"odinger equation for atomic targets within the single active electron approximation. We further show that experimental photoelectron spectra for a wide range of laser intensity and wavelength can be explained by the QRS theory, and that the DCS between electrons and target ions can be extracted from experimental photoelectron spectra. By generalizing the QRS theory to molecular targets, we discuss how few-cycle infrared lasers offer a promising tool for dynamic chemical imaging with temporal resolution of a few femtoseconds.Comment: 19 pages, 19 figure

    Correlation of photobleaching, oxidation and metal induced fluorescence quenching of DNA-templated silver nanoclusters

    Get PDF
    Few-atom noble metal nanoclusters have attracted a lot of interest due to their potential applications in biosensor development, imaging and catalysis. DNA-templated silver nanoclusters (AgNCs) are of particular interest as different emission colors can be obtained by changing the DNA sequence. A popular analytical application is fluorescence quenching by Hg2+, where d10–d10 metallophilic interaction has often been proposed for associating Hg2+ with nanoclusters. However, it cannot explain the lack of response to other d10 ions such as Zn2+ and Cd2+. In our effort to elucidate the quenching mechanism, we studied a total of eight AgNCs prepared by different hairpin DNA sequences; they showed different sensitivity to Hg2+, and DNA with a larger cytosine loop size produced more sensitive AgNCs. In all the cases, samples strongly quenched by Hg2+ were also more easily photobleached. Light of shorter wavelengths bleached AgNCs more potently, and photobleached samples can be recovered by NaBH4. Strong fluorescence quenching was also observed with high redox potential metal ions such as Ag+, Au3+, Cu2+ and Hg2+, but not with low redox potential ions. Such metal induced quenching cannot be recovered by NaBH4. Electronic absorption and mass spectrometry studies offered further insights into the oxidation reaction. Our results correlate many important experimental observations and will fuel the further growth of this field.University of Waterloo || Canadian Foundation for Innovation || Ontario Ministry of Research & Innovation || Natural Sciences and Engineering Research Council |

    Electrical Detection and Magnetic-Field Control of Spin States in Phosphorus-Doped Silicon

    Full text link
    Electron paramagnetic resonance of ensembles of phosphorus donors in silicon has been detected electrically with externally applied magnetic fields lower than 200 G. Because the spin Hamiltonian was dominated by the contact hyperfine term rather than by the Zeeman terms at such low magnetic fields, superposition states α∣↑↓>+β∣↓↑> \alpha{}| \uparrow \downarrow >+\beta{}| \downarrow \uparrow > and −β∣↑↓>+α∣↓↑>-\beta{}| \uparrow \downarrow > + \alpha{}| \downarrow \uparrow > were formed between phosphorus electron and nuclear spins, and electron paramagnetic resonance transitions between these superposition states and ∣↑↑>| \uparrow \uparrow > or ∣↓↓>| \downarrow \downarrow > states are observed clearly. A continuous change of α\alpha{} and β\beta{} with the magnetic field was observed with a behavior fully consistent with theory of phosphorus donors in silicon.Comment: 6 pages, 5 figure

    Hadronic Masses and Regge Trajectories

    Get PDF
    A comprehensive phenomenological analysis of experimental data and some theoretical models is presented here (for mesons) to critically discuss how Regge trajectory parameters depend on flavor. Through analytic continuation of physical trajectories (obtained from resonance data) into the space like region, we derive the suppression factor for heavy flavor production. The case of our D Regge exchange, both for D and Λc\Lambda_c production, is considered in some detail. Good agreement with data is reached confirming that indeed the slopes of heavier flavors decrease. This result suggests that the confinement potential has a substantial dependence on the quark masses. In a simple non-relativistic model, constrained to produce linear Regge trajectories, it is shown that a linear quark mass dependence is required (in the confinement part of the potential) in order for the slope to decrease in the appropriate way.Comment: 19 pages, 9 Figures, IV Table

    Suggestions for a way forward to further evaluate ageing error for Southern Hemisphere minke whales.

    Get PDF
    Paper SC/59/O8 provides a very helpful perspective and suggestions to help clarify the use of Antarctic minke whale age data in the commercial and research permit periods. On the basis of the paper, some areas for further work suggest themselves and these are outlined below. We recognise that these involve, in some cases, quite substantial additional work but believe that this will assist considerably in addressing the issues raised inter alia at the JARPA review meeting as well as during past IA sub-committee meetings and allow the valuable analyses involving both commercial and scientific permit data to be undertaken. The second experiment is designed to confirm the proposal in SC/59/O8 to limit analyses to using only data for animals aged six years and over
    • …
    corecore