323 research outputs found

    Dissolved CO2 in natural waters: development of an automated monitoring system and first application to Stromboli volcano (Italy)

    Get PDF
    The study of geochemical parameters applied to natural systems has provided improved knowledge of geochemical mechanisms of gas/rock dissolution in natural waters that are linked to gas–water and/or water– rock interaction processes. Here we present the results of our studies focused on the development of an automated monitoring system for measuring the amount of dissolved CO2 in natural waters. The system is based on the principle of a dynamic equilibrium between water and the air as the host gas. The PCO2 measurements were carried out every four hours, and the equilibration time was around 20 minutes. Moreover, application to the thermal aquifer of Stromboli volcano during the 2009-2010 period is shown and analyzed. The data highlight a clear correlation between the changes in the PCO2 in the thermal aquifer and the changes in volcanic activity

    MITOCHONDRIAL MASS, DISTRIBUTION AND ACTIVITY DURING SEA URCHIN OOGENESIS

    Get PDF
    The sea urchin egg is a favourite model for studies of the molecular biology and physiology of fertilization and early development, yet we know sparingly little of its oocytes and of mitochondria behaviour during oogenesis. The process of oogenesis in most echinoderms is asynchronous so each ovary lobe has hundreds of oocytes at all stages of development. At the beginning of oogenesis, the oocyte is about 10 \ub5m in diameter. During the vitellogenic phase of oogenesis, the oocyte accumulate yolk proteins and grow to ten times their original size to 80 to 100 \ub5m in sea urchins. The oocyte, arrested at the prophase of the first meiotic division, is apparent with its large nucleus, the germinal vesicle (GV), containing a prominent nucleolus. Echinoid (such as sea urchin) and Holothurian oocytes complete meiotic maturation prior to fertilization, distinct from other echinoderms and almost all others animals. As maturation progresses, it occurs the GV breaks down (GVBD). These eggs may then be stored for weeks to months within the female before they are spawned, and the proportion of eggs in the ovary increases from early to late season, as the numbers of oocytes decline [1]. Mitochondria, generally known as the powerhouses of eukaryotic cells, play a primary role in cellular energetic metabolism, homeostasis and death. These organelles, with their multicopy genome maternally inherited, are directly involved at several levels in the reproductive process since their functional status influences the quality of oocytes and contributes to the process of fertilization and embryonic development. It has been demonstrated that the number of maternal mitochondria is sufficient to support development until late stages without new synthesis of mitochondrial DNA or production of new organelles [2]. During embryogenesis mitochondrial mass does not change, whereas mitochondrial respiration increases [3]. The behaviour of these organelles during oogenesis remains at moment unclear. In the present paper we studied, by Confocal Laser Scanning Microscopy tecnologies (CLSM), the mass and distribution, the activity and the DNA content of sea urchin Paracentrotus lividus mitochondria during oogenesis, by in vivo incubating oocytes of different size with cell-permeant probes specific for mitochondria and for DNA and by immunodetection of hsp60 chaperonine, a well known mitochondrial marker. In particular the oocytes were grouped in six classes: < 10, 20/30, 40/50, 60/70, 80/90 \ub5m, and 90 \ub5m ovulated egg, on the base of diameters. Microscopic observations were performed capturing 2 \ub5m thick layers of oocytes. Of the several thousands oocytes we observed, 20 for each different oogenesis stage were analyzed and processed. In order to interpret results and to draw unequivocal conclusions, we measured by IMAGE J software analysis the intensity values of fluorescent signals, as suggested in Agnello et al 2008 [4]. The mitochondria of oocytes with a diameter between 20 and 70 \ub5m, appeared to give rise to clusters that disappear in that of 80 \ub5m. In the oocytes between 60 and 90 \ub5m the red fluorescence seems to be more evident around the germinal vesicle (the merge tends to red), suggesting an increasing oxidative phosphorylation activity. In the ovulated eggs, red and green fluorescence are uniformly distributed suggesting that mitochondria are dispersed in the cytoplasm. In addition the merge of green and red colours shows that the whole mitochondrial population is consuming oxygen at the same level (the resulting colours tends to yellow), figure 1. In order to calculate the total mitochondrial mass and activity we integrated the values of pixel intensities for all captured sections and used the arithmetic means to draw a statistical analysis. Results suggest a parallel rise of mitochondrial mass and activity, suggesting that the amount and activity of organelles change remarkably during oogenesis. Figure 1. shows the distribution of hsp60 protein, detected by immunofluorescence analysis (A), the mitochondrial and genomic DNA, after in vivo incubation with PicoGreen probe (B) and the merge of green and red fluorescence signal, respectively due to mitochondrial mass and activity, after in vivo incubation with Mitotraker Green and Orange (C). The size of the oocytes reported is 80 \ub5m. Results suggest that mitochondria are actively duplicating and that mitochondrial DNA is replicating during the different oogenesis phases. It is noteworthy that around the germinal vesicle, especially in the larger oocytes, next to the germinal vesicle breakdown, the organelles are more active in oxygen consumption, probably due to the major energetic needing in this key moment of gametogenesis. [1] Wessel G.M., Voronina E., and Brooks J.M. (2004) Obtaining and handling echinoderm oocytes. In \u201cMethods in Cell Biology\u201d, Elsevier. Vol.74, Chapter 5, pp. 87-114. [2] Matsumoto L., Kasamatsu H., Pik\ub4o L. and Vinograd J. (1974) Mitochondrial DNA replication in sea urchin oocytes. J. Cell Biol. 63: 146\u2013159. [3] Morici G., Agnello M., Spagnolo F., Roccheri M.C., Di Liegro C.M. and Rinaldi A.M. (2007) Confocal microscopy study of the distribution, content and activity of mitochondria during Paracentrotus lividus development. Journal of Microscopy. 228: 165-173. [4] Agnello M., Morici G., Rinaldi A.M. (2008) A method for measuring mitochondrial mass and activity . Cytotechnology. 56: 145-149. Maria Carmela Roccheri: Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche. Universit\ue0 degli Studi di Palermo, Viale delle Scienze Ed.16, Palermo, Italy; tel: 09123897414; e-mail: [email protected]

    Identification and characterization of PlAlix, the Alix homologue from the Mediterranean sea urchin Paracentrotus lividus.

    Get PDF
    The sea urchin provides a relatively simple and tractable system for analyzing the early stages of embryo development. Here, we use the sea urchin species, Paracentrotus lividus, to investigate the role of Alix in key stages of embryogenesis, namely the egg fertilization and the first cleavage division. Alix is a multifunctional protein involved in different cellular processes including endocytic membrane trafficking, filamentous (F)-actin remodeling, and cytokinesis. Alix homologues have been identified in different metazoans; in these organisms, Alix is involved in oogenesis and in determination/differentiation events during embryo development. Herein, we describe the identification of the sea urchin homologue of Alix, PlAlix. The deduced amino acid sequence shows that Alix is highly conserved in sea urchins. Accordingly, we detect the PlAlix protein cross-reacting with monoclonal Alix antibodies in extracts from P. lividus, at different developmental stages. Focusing on the role of PlAlix during early embryogenesis we found that PlAlix is a maternal protein that is expressed at increasingly higher levels from fertilization to the 2-cell stage embryo. In sea urchin eggs, PlAlix localizes throughout the cytoplasm with a punctuated pattern and, soon after fertilization, accumulates in larger puncta in the cytosol, and in microvilli-like protrusions. Together our data show that PlAlix is structurally conserved from sea urchin to mammals and may open new lines of inquiry into the role of Alix during the early stages of embryo development

    Biochar Particles Obtained from Agricultural Carob Waste as a Suitable Filler for Sustainable Biocomposite Formulations

    Get PDF
    In the context of sustainable and circular economy, the recovery of biowaste for sustainable biocomposites formulation is a challenging issue. The aim of this work is to give a new life to agricultural carob waste after glucose extraction carried out by a local factory for carob candy production. A pyrolysis process was carried out on bio-waste to produce biofuel and, later, the solid residual fraction of pyrolysis process was used as interesting filler for biocomposites production. In this work, biochar particles (BC) as a pyrolysis product, after fuels recovery of organic biowaste, specifically, pyrolyzed carobs after glucose extraction, were added on poly(butylene-adipate-co-terephthalate), (PBAT), at two different concentrations, i.e., 10 and 20 wt%. The BC have been produced using three pyrolysis processing temperatures (i.e., 280, 340 and 400 degrees C) to optimize the compositions of produced solid fractions and biofuels. The resulting particles from the pyrolysis process (BC280, BC340 and BC400) were considered as suitable fillers for PBAT. Firstly, the BC particles properties were characterized by elemental composition and spectroscopy analysis, particle size measurements and evaluation of radical scavenging activity and efficiency. Moreover, PBAT/BC composites were subjected to analysis of their rheological and thermal behavior, morphologies and mechanical properties. In addition, accelerated weathering, monitored by both tensile test and spectroscopic analysis, was carried out, and obtained results show that the biochar particles can exert a beneficial effect on photo-oxidation delay of PBAT matrix

    Endurance training damages small airway epithelium in mice.

    Get PDF
    RATIONALE: In athletes, airway inflammatory cells were found to be increased in induced sputum or bronchial biopsies. Most data were obtained after exposure to cold and dry air at rest or during exercise. Whether training affects epithelial and inflammatory cells in small airways is unknown. OBJECTIVES: To test whether endurance training under standard environmental conditions causes epithelial damage and inflammation in the small airways of mice. METHODS AND MEASUREMENTS: Formalin-fixed, paraffin-embedded lung sections were obtained in sedentary (n = 14) and endurance-trained (n = 16) Swiss mice at baseline and after 15, 30, and 45 days of training. The following variables were assessed (morphometry and immunohistochemistry) in small airways (basement membrane length < 1 mm): (1) integrity, proliferation, and apoptosis of bronchiolar epithelium; and (2) infiltration, activation, and apoptosis of inflammatory cells. MAIN RESULTS: Compared with sedentary mice, bronchiolar epithelium of trained mice showed progressive loss of ciliated cells, slightly increased thickness, unchanged goblet cell number and appearance, and increased apoptosis and proliferation (proliferating cell nuclear antigen) (p < 0.001 for all variables). Leukocytes (CD45(+) cells) infiltrated airway walls (p < 0.0001) and accumulated within the lumen (p < 0.001); however, apoptosis of CD45(+) cells did not differ between trained and sedentary mice. Nuclear factor-kappaB translocation and inhibitor-alpha of NF-kappaB (IkappaBalpha) phosphorylation were not increased in trained compared with sedentary mice. CONCLUSIONS: Bronchiolar epithelium showed damage and repair associated with endurance training. Training increased inflammatory cells in small airways, but inflammatory activation was not increased. These changes may represent an adaptive response to increased ventilation during exercise

    Flexible Perfluoropolyethers-Functionalized CNTs-Based UHMWPE Composites: A Study on Hydrogen Evolution, Conductivity and Thermal Stability

    Get PDF
    Flexible conductive composites based on ultra-high molecular weight polyethylene (UHMWPE) filled with multi-walled carbon nanotubes (CNTs) modified by perfluoropolyethers (PFPEs) were produced. The bonding of PFPE chains, added in 1:1 and 2:1 weight ratios, on CNTs influences the dispersion of nanotubes in the UHMWPE matrix due to the non-polar nature of the polymer, facilitating the formation of nanofillers-rich conductive pathways and improving composites' electrical conductivity (two to five orders of magnitude more) in comparison to UHMWPE-based nanocomposites obtained with pristine CNTs. Electrochemical atomic force microscopy (EC-AFM) was used to evaluate the morphological changes during cyclic voltammetry (CV). The decrease of the overpotential for hydrogen oxidation peaks in samples containing PFPE-functionalized CNTs and hydrogen production (approximately -1.0 V vs. SHE) suggests that these samples could find application in fuel cell technology as well as in hydrogen storage devices. Carbon black-containing composites were prepared for comparative study with CNTs containing nanocomposites

    Flexible Perfluoropolyethers-Functionalized CNTs-Based UHMWPE Composites: A Study on Hydrogen Evolution, Conductivity and Thermal Stability

    Get PDF
    Flexible conductive composites based on ultra-high molecular weight polyethylene (UHMWPE) filled with multi-walled carbon nanotubes (CNTs) modified by perfluoropolyethers (PFPEs) were produced. The bonding of PFPE chains, added in 1:1 and 2:1 weight ratios, on CNTs influences the dispersion of nanotubes in the UHMWPE matrix due to the non-polar nature of the polymer, facilitating the formation of nanofillers-rich conductive pathways and improving composites’ electrical conductivity (two to five orders of magnitude more) in comparison to UHMWPE-based nanocomposites obtained with pristine CNTs. Electrochemical atomic force microscopy (EC-AFM) was used to evaluate the morphological changes during cyclic voltammetry (CV). The decrease of the overpotential for hydrogen oxidation peaks in samples containing PFPE-functionalized CNTs and hydrogen production (approximately −1.0 V vs. SHE) suggests that these samples could find application in fuel cell technology as well as in hydrogen storage devices. Carbon black-containing composites were prepared for comparative study with CNTs containing nanocomposites

    Circulating haematopoietic and endothelial progenitor cells are decreased in COPD

    Get PDF
    Circulating CD34+ cells are haemopoietic progenitors that may play a role in tissue repair. No data are available on circulating progenitors in chronic obstructive pulmonary disease (COPD). Circulating CD34+ cells were studied in 18 patients with moderate-to-severe COPD (age: mean+/-sd 68+/-8 yrs; forced expiratory volume in one second: 48+/-12% predicted) and 12 controls, at rest and after endurance exercise. Plasma concentrations of haematopoietic growth factors (FMS-like tyrosine kinase 3 (Flt3) ligand, kit ligand), markers of hypoxia (vascular endothelial growth factor (VEGF)) and stimulators of angiogenesis (VEGF, hepatocyte growth factor (HGF)) and markers of systemic inflammation (tumour necrosis factor (TNF)-alpha, interleukin (IL)-6, IL-8) were measured. Compared with the controls, the COPD patients showed a three-fold reduction in CD34+ cell counts (3.3+/-2.5 versus 10.3+/-4.2 cells.microL-1), and a 50% decrease in AC133+ cells. In the COPD patients, progenitor-derived haemopoietic and endothelial cell colonies were reduced by 30-50%. However, four COPD patients showed progenitor counts in the normal range associated with lower TNF-alpha levels. In the entire sample, CD34+ cell counts correlated with exercise capacity and severity of airflow obstruction. After endurance exercise, progenitor counts were unchanged, while plasma Flt3 ligand and VEGF only increased in the COPD patients. Plasma HGF levels were higher in the COPD patients compared with the controls and correlated inversely with the number of progenitor-derived colonies. In conclusion, circulating CD34+ cells and endothelial progenitors were decreased in chronic obstructive pulmonary disease patients and could be correlated with disease severity
    • …
    corecore