1,263 research outputs found

    Efficient and Perfect domination on circular-arc graphs

    Get PDF
    Given a graph G=(V,E)G = (V,E), a \emph{perfect dominating set} is a subset of vertices VV(G)V' \subseteq V(G) such that each vertex vV(G)Vv \in V(G)\setminus V' is dominated by exactly one vertex vVv' \in V'. An \emph{efficient dominating set} is a perfect dominating set VV' where VV' is also an independent set. These problems are usually posed in terms of edges instead of vertices. Both problems, either for the vertex or edge variant, remains NP-Hard, even when restricted to certain graphs families. We study both variants of the problems for the circular-arc graphs, and show efficient algorithms for all of them

    Control of the geometric phase and pseudo-spin dynamics on coupled Bose-Einstein condensates

    Full text link
    We describe the behavior of two coupled Bose-Einstein condensates in time-dependent (TD) trap potentials and TD Rabi (or tunneling) frequency, using the two-mode approach. Starting from Bloch states, we succeed to get analytical solutions for the TD Schroedinger equation and present a detailed analysis of the relative and geometric phases acquired by the wave function of the condensates, as well as their population imbalance. We also establish a connection between the geometric phases and constants of motion which characterize the dynamic of the system. Besides analyzing the affects of temporality on condensates that differs by hyperfine degrees of freedom (internal Josephson effect), we also do present a brief discussion of a one specie condensate in a double-well potential (external Josephson effect).Comment: 1 tex file and 11 figures in pdf forma

    A Decision-Making Algorithm for Children with Suspected Coronavirus Disease 2019

    Full text link

    Collisional Semiclassical Aproximations in Phase-Space Representation

    Get PDF
    The Gaussian Wave-Packet phase-space representation is used to show that the expansion in powers of \hbar of the quantum Liouville propagator leads, in the zeroth order term, to results close to those obtained in the statistical quasiclassical method of Lee and Scully in the Weyl-Wigner picture. It is also verified that propagating the Wigner distribution along the classical trajectories the amount of error is less than that coming from propagating the Gaussian distribution along classical trajectories.Comment: 20 pages, REVTEX, no figures, 3 tables include

    An Optimal Self-Stabilizing Firing Squad

    Full text link
    Consider a fully connected network where up to tt processes may crash, and all processes start in an arbitrary memory state. The self-stabilizing firing squad problem consists of eventually guaranteeing simultaneous response to an external input. This is modeled by requiring that the non-crashed processes "fire" simultaneously if some correct process received an external "GO" input, and that they only fire as a response to some process receiving such an input. This paper presents FireAlg, the first self-stabilizing firing squad algorithm. The FireAlg algorithm is optimal in two respects: (a) Once the algorithm is in a safe state, it fires in response to a GO input as fast as any other algorithm does, and (b) Starting from an arbitrary state, it converges to a safe state as fast as any other algorithm does.Comment: Shorter version to appear in SSS0

    Multi-Dimensional Hermite Polynomials in Quantum Optics

    Full text link
    We study a class of optical circuits with vacuum input states consisting of Gaussian sources without coherent displacements such as down-converters and squeezers, together with detectors and passive interferometry (beam-splitters, polarisation rotations, phase-shifters etc.). We show that the outgoing state leaving the optical circuit can be expressed in terms of so-called multi-dimensional Hermite polynomials and give their recursion and orthogonality relations. We show how quantum teleportation of photon polarisation can be modelled using this description.Comment: 10 pages, submitted to J. Phys. A, removed spurious fil

    Optical bistability in sideband output modes induced by squeezed vacuum

    Full text link
    We consider NN two-level atoms in a ring cavity interacting with a broadband squeezed vacuum centered at frequency ωs\omega_{s} and an input monochromatic driving field at frequency ω\omega . We show that, besides the central mode (at \o), many other {\em sideband modes} are produced at the output, with frequencies shifted from ω\omega by multiples of 2(ωωs) 2(\omega -\omega_{s}). Here we analyze the optical bistability of the two nearest sideband modes, one red-shifted and the other blue-shifted.Comment: Replaced with final published versio
    corecore