3,684 research outputs found

    Radio continuum imaging of the R CrA star-forming region with the ATCA

    Get PDF
    The aim of this study is to investigate the nature of radio sources associated with young stellar objects (YSOs) belonging to the R CrA cluster. By combining the centimetre radio data with the wealth of shorter wavelength data accumulated recently we wish to refine estimates of the evolutionary stages of the YSOs. Fluxes and spectral indices for the brightest radio sources were derived from the observations at 3, 6, and 20 cm using the ATCA. Seven of detected sources can be assigned to YSOs, which have counterparts in the X-rays, infrared or submm. One of the YSOs, Radio Source 9, is a Class 0 candidate, and another, IRS 7B, is suggested to be in the Class 0/I transition stage. IRS 7B is associated with extended radio lobes at 6 and 20 cm. The lobes may have a gyrosynchrotron emission component, which could be understood in terms of Fermi accleration in shocks. The Class I objects detected here seem to be a mixed lot. One of these, the wide binary IRS 5, shows a negative spectral index, rapid variability, and a high degree of circular polarisation with V/I33V/I\approx33 % on one of the days of observation. These signs of magnetic activity suggest that at least one of the binary components has advanced beyond the Class I stage. The radio source without YSO assigment, Radio Source 5, has been suggested to be a brown dwarf. The radio properties, in particular its persistent strong emission, do not support this classification. The radio characteristics of the detected YSOs roughly agree with the scheme where the dominant emission mechanism changes with age. The heterogeneity of the Class I group can possibly be explained by a drastic decline in the jet activity during this stage, which also changes the efficiency of free-free absorption around the protostar.Comment: Accepted for publication in A&A (8 pages, 4 figures, 4 tables

    An ALMA survey of submillimetre galaxies in the COSMOS field: Physical properties derived from energy balance spectral energy distribution modelling

    Get PDF
    Context. Submillimetre galaxies (SMGs) represent an important source population in the origin and cosmic evolution of the most massive galaxies. Hence, it is imperative to place firm constraints on the fundamental physical properties of large samples of SMGs. Aims. We determine the physical properties of a sample of SMGs in the COSMOS field that were pre-selected at the observed-frame wavelength of λ_(obs) = 1.1 mm, and followed up at λ_(obs) = 1.3 mm with the Atacama Large Millimetre/submillimetre Array (ALMA). Methods. We used the MAGPHYS model package to fit the panchromatic (ultraviolet to radio) spectral energy distributions (SEDs) of 124 of the target SMGs, which lie at a median redshift of z = 2.30 (19.4% are spectroscopically confirmed). The SED analysis was complemented by estimating the gas masses of the SMGs by using the λ_(obs) = 1.3 mm dust emission as a tracer of the molecular gas component. Results. The sample median and 16th–84th percentile ranges of the stellar masses, obscured star formation rates, dust temperatures, and dust and gas masses were derived to be log(M⋆/M⊙) = 11.09^(+0.41)_(-0.53), SFR = 402^(+661)_(-233) M⊙ yr^(-1), T_(dust) = 39.7^(+9.7)_(-7.4) K, log(M_(dust)/M⊙) = 9.01^(+0.20)_(-0.31), and log(M_(gas)/M⊙ = 11.34^(+0.20)_(-0.23), respectively. The M_(dust)/M⋆ ratio was found to decrease as a function of redshift, while the M_(gas)/M_(dust) ratio shows the opposite, positive correlation with redshift. The derived median gas-to-dust ratio of 120^(+73)_(-30) agrees well with the canonical expectation. The gas fraction (M_(gas)/(M_(gas) + M⋆)) was found to range from 0.10 to 0.98 with a median of 0.62^(+0.27)_(-0.23). We found that 57.3% of our SMGs populate the main sequence (MS) of star-forming galaxies, while 41.9% of the sources lie above the MS by a factor of greater than three (one source lies below the MS). These super-MS objects, or starbursts, are preferentially found at z ≳ 3, which likely reflects the sensitivity limit of our source selection. We estimated that the median gas consumption timescale for our SMGs is ~535 Myr, and the super-MS sources appear to consume their gas reservoir faster than their MS counterparts. We found no obvious stellar mass–size correlations for our SMGs, where the sizes were measured in the observed-frame 3 GHz radio emission and rest-frame UV. However, the largest 3 GHz radio sizes are found among the MS sources. Those SMGs that appear irregular in the rest-frame UV are predominantly starbursts, while the MS SMGs are mostly disk-like. Conclusions. The physical parameter distributions of our SMGs and those of the equally bright, 870 μm selected SMGs in the ECDFS field (the so-called ALESS SMGs) are unlikely to be drawn from common parent distributions. This might reflect the difference in the pre-selection wavelength. Albeit being partly a selection bias, the abrupt jump in specific SFR and the offset from the MS of our SMGs at z ≳ 3 might also reflect a more efficient accretion from the cosmic gas streams, higher incidence of gas-rich major mergers, or higher star formation efficiency at z ≳ 3. We found a rather flat average trend between the SFR and dust mass, but a positive SFR−M_(gas) correlation. However, to address the questions of which star formation law(s) our SMGs follow, and how they compare with the Kennicutt-Schmidt law, the dust-emitting sizes of our sources need to be measured. Nonetheless, the larger radio-emitting sizes of the MS SMGs compared to starbursts is a likely indication of their more widespread, less intense star formation activity. The irregular rest-frame UV morphologies of the starburst SMGs are likely to echo their merger nature. The current stellar mass content of the studied SMGs is very high, so they must quench to form the so-called red-and-dead massive ellipticals. Our results suggest that the transition from high-z SMGs to local ellipticals via compact, quiescent galaxies (cQGs) at z ~ 2 might not be universal, and the latter population might also descend from the so-called blue nuggets. However, z ≳ 4 SMGs could be the progenitors of higher redshift, z ≳ 3 cQGs, while our results are also consistent with the possibility that ultra-massive early-type galaxies found at 1.2 ≲ z ≲ 2 experienced an SMG phase at z ≤ 3

    An ALMA survey of submillimetre galaxies in the COSMOS field: The extent of the radio-emitting region revealed by 3 GHz imaging with the Very Large Array

    Get PDF
    Context. The observed spatial scale of the radio continuum emission from star-forming galaxies can be used to investigate the spatial extent of active star formation, constrain the importance of cosmic-ray transport, and examine the effects of galaxy interactions. Aims. We determine the radio size distribution of a large sample of 152 submillimetre galaxies (SMGs) in the COSMOS field that were pre-selected at 1.1 mm, and later detected with the Atacama Large Millimetre/submillimetre Array (ALMA) in the observed-frame 1.3 mm dust continuum emission at a signal-to-noise ratio (S/N) of ≥5. Methods. We used the deep, subarcsecond-resolution (1σ = 2.3μJy beam^(-1); .̋ 75) centimetre radio continuum observations taken by the Karl G. Jansky Very Large Array (VLA)-COSMOS 3 GHz Large Project. Results. One hundred and fifteen of the 152 target SMGs (76% ± 7%) were found to have a 3 GHz counterpart (≥ 4.2σ), which renders the radio detection rate notably high. The median value of the deconvolved major axis full width at half maximum (FWHM) size at 3 GHz is derived to be 0.̋59 ± 0.̋05 , or 4.6 ± 0.4 kpc in physical units, where the median redshift of the sources is z = 2.23 ± 0.13 (23% are spectroscopic and 77% are photometric values). The radio sizes are roughly log-normally distributed, and they show no evolutionary trend with redshift, or difference between different galaxy morphologies. We also derived the spectral indices between 1.4 and 3 GHz, and 3 GHz brightness temperatures for the sources, and the median values were found to be α_(1.4 GHz)^(3 GHz) = -0.67 (S_ν ∝ ν^α) and T_B = 12.6 ± 2 K. Three of the target SMGs, which are also detected with the Very Long Baseline Array (VLBA) at 1.4 GHz (AzTEC/C24b, 61, and 77a), show clearly higher brightness temperatures than the typical values, reaching T_B(3 GHz) > 10^(4.03) K for AzTEC/C61. Conclusions. The derived median radio spectral index agrees with a value expected for optically thin non-thermal synchrotron radiation, and the low median 3 GHz brightness temperature shows that the observed radio emission is predominantly powered by star formation and supernova activity. However, our results provide a strong indication of the presence of an active galactic nucleus in the VLBA and X-ray-detected SMG AzTEC/C61 (high TB and an inverted radio spectrum). The median radio-emitting size we have derived is ~ 1.5–3 times larger than the typical far-infrared dust-emitting sizes of SMGs, but similar to that of the SMGs’ molecular gas component traced through mid-J line emission of carbon monoxide. The physical conditions of SMGs probably render the diffusion of cosmic-ray electrons inefficient, and hence an unlikely process to lead to the observed extended radio sizes. Instead, our results point towards a scenario where SMGs are driven by galaxy interactions and mergers. Besides triggering vigorous starbursts, galaxy collisions can also pull out the magnetised fluids from the interacting disks, and give rise to a taffy-like synchrotron-emitting bridge. This provides an explanation for the spatially extended radio emission of SMGs, and can also cause a deviation from the well-known infrared-radio correlation owing to an excess radio emission. Nevertheless, further high-resolution observations are required to examine the other potential reasons for the very compact dust-emitting sizes of SMGs, such as the radial dust temperature and metallicity gradients

    Magnetic Geometry and the Confinement of Electrically Conducting Plasmas

    Get PDF
    We develop an effective field theory approach to inspect the electromagnetic interactions in an electrically neutral plasma, with an equal number of negative and positive charge carriers. We argue that the static equilibrium configurations within the plasma are topologically stable solitons, that describe knotted and linked fluxtubes of helical magnetic fields.Comment: 9 pages 1 ps-figur

    Bilateral gluteal metastases from a misdiagnosed intrapelvic gastrointestinal stromal tumor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The location of gastrointestinal stromal tumors (GIST) outside of the gastrointestinal system is a rare event.</p> <p>Case presentation</p> <p>A 56-year old woman presented with a GIST of the pelvis was misdiagnosed and treated as a uterine leiomyosarcoma. The diagnosis was made after the CD117 (KIT) positivity in the biopsy of the excised bowel mass four years from the first presentation. During this period she presented a bilateral muscle and subcutaneous metastasis in the gluteal area.</p> <p>Conclusion</p> <p>The correct diagnosis of the extra-gastrointestinal stromal tumor is a challenge even for experienced pathologists. CD117 (KIT) positivity is the most important immunohistochemical feature in the histological diagnosis. To our knowledge a metastatic EGIST (extra-gastrointestinal stromal tumor) to the skeletal muscle bilaterally has not been described previously in the English medical literature.</p

    Evidence for Color Fluctuations in Hadrons from Coherent Nuclear Diffraction}

    Full text link
    A QCD-based treatment of projectile size fluctuations is used to compute inelastic diffractive cross sections σdiff\sigma_{diff} for coherent hadron-nuclear processes. We find that fluctuations near the average size give the major contribution to the cross section with few% \le few \% contribution from small size configurations. The computed values of σdiff\sigma_{diff} are consistent with the limited available data. The importance of coherent diffraction studies for a wide range of projectiles for high energy Fermilab fixed target experiments is emphasized. The implications of these significant color fluctuations for relativistic heavy ion collisions are discussed.Comment: Report number DOE/ER 40427-13-N93 11 pages, 3 figures available from author Mille

    Variability in Herbage Mass and Chemical Composition within a Timothy Sward

    Get PDF
    Variability in herbage mass (HM) and chemical composition of timothy (Phleum pratense L.) sward was studied in a three-hectare field. The field, which was flat, was divided into twelve sections and a sampling site was randomly selected in each. The study was carried out in Sotkamo (64o 01’N, 28o22’E) research station in Finland. Snow depth and frost conditions were measured in winter and soil water content was monitored in the growing season at each sampling site. Observations on the crop included assessment of herbage ground cover and winter damage percentage, stand height and HM and analysis of neutral detergent fibre (NDF) and nitrogen concentration. Forage was harvested twice during the experiment and the first cut was made at ear emergence. Winter damage varied from 0 to 68% and herbage ground cover in spring from 30 to 100%. Variability in HM was higher at the first cut (from 1767 to 4390 kg DM ha-1) than at the second cut (from 3890 to 4348 kg DM ha-1). NDF content varied from 601 to 688 g kg-1 at the first cut and from 582 to 632 g kg-1 from at the second cut. The 95% confidence limits for NDF at the first cut were from 635 to 663 g kg-1 and at the second cut from 589 to 604 g kg-1

    alphaPDE: A New Multivariate Technique for Parameter Estimation

    Full text link
    We present alphaPDE, a new multivariate analysis technique for parameter estimation. The method is based on a direct construction of joint probability densities of known variables and the parameters to be estimated. We show how posterior densities and best-value estimates are then obtained for the parameters of interest by a straightforward manipulation of these densities. The method is essentially non-parametric and allows for an intuitive graphical interpretation. We illustrate the method by outlining how it can be used to estimate the mass of the top quark, and we explain how the method is applied to an ensemble of events containing background.Comment: 11 pages, published versio
    corecore