1,021 research outputs found

    On the bend number of circular-arc graphs as edge intersection graphs of paths on a grid

    Full text link
    Golumbic, Lipshteyn and Stern \cite{Golumbic-epg} proved that every graph can be represented as the edge intersection graph of paths on a grid (EPG graph), i.e., one can associate with each vertex of the graph a nontrivial path on a rectangular grid such that two vertices are adjacent if and only if the corresponding paths share at least one edge of the grid. For a nonnegative integer kk, BkB_k-EPG graphs are defined as EPG graphs admitting a model in which each path has at most kk bends. Circular-arc graphs are intersection graphs of open arcs of a circle. It is easy to see that every circular-arc graph is a B4B_4-EPG graph, by embedding the circle into a rectangle of the grid. In this paper, we prove that every circular-arc graph is B3B_3-EPG, and that there exist circular-arc graphs which are not B2B_2-EPG. If we restrict ourselves to rectangular representations (i.e., the union of the paths used in the model is contained in a rectangle of the grid), we obtain EPR (edge intersection of path in a rectangle) representations. We may define BkB_k-EPR graphs, k0k\geq 0, the same way as BkB_k-EPG graphs. Circular-arc graphs are clearly B4B_4-EPR graphs and we will show that there exist circular-arc graphs that are not B3B_3-EPR graphs. We also show that normal circular-arc graphs are B2B_2-EPR graphs and that there exist normal circular-arc graphs that are not B1B_1-EPR graphs. Finally, we characterize B1B_1-EPR graphs by a family of minimal forbidden induced subgraphs, and show that they form a subclass of normal Helly circular-arc graphs

    Mathematical modelling and numerical bifurcation analysis of inbreeding and interdisciplinarity dynamics in academia

    Get PDF
    We address a mathematical model to approximate in a coarse qualitative the interaction between inbreeding-lobbying and interdisciplinarity in academia and perform a one and two-parameter numerical bifurcation analysis to analyse its dynamics. Disciplinary diversity is a necessary condition for the development of interdisciplinarity, which is being recognized today as the key to establish a vibrant academic environment with bigger potential for breakthroughs/innovation in research and technology. However, the interaction of several factors including institutional policies, and behavioural attitudes put significant barriers on advancing interdisciplinarity. A “cognitive rigidity” may rise due to reactive academic lobby behaviours favouring inbreeding. The proposed model consists of four coupled non-linear Ordinary Differential Equations simulating the interaction between certain types of academic behaviour and the rate of knowledge advancement which is related to the level of disciplinary diversity. The effect of a control policy that inhibits inbreeding-lobbying is also investigated. The numerical bifurcation analysis reveals a rich nonlinear behaviour including multistability, sustained oscillations, limit points of limit cycles, homoclinic bifurcations as well as codimension-two bifurcations and in particular Bogdanov–Takens and Bautin bifurcations

    Molecular and physical characteristics of aerosol at a remote free troposphere site: implications for atmospheric aging

    Get PDF
    Aerosol properties are transformed by atmospheric processes during long-range transport and play a key role in the Earth's radiative balance. To understand the molecular and physical characteristics of free tropospheric aerosol, we studied samples collected at the Pico Mountain Observatory in the North Atlantic. The observatory is located in the marine free troposphere at 2225&thinsp;m above sea level, on Pico Island in the Azores archipelago. The site is ideal for the study of long-range-transported free tropospheric aerosol with minimal local influence. Three aerosol samples with elevated organic carbon concentrations were selected for detailed analysis. FLEXPART retroplumes indicated that two of the samples were influenced by North American wildfire emissions transported in the free troposphere and one by North American outflow mainly transported within the marine boundary layer. Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry was used to determine the detailed molecular composition of the samples. Thousands of molecular formulas were assigned to each of the individual samples. On average  ∼ 60&thinsp;% of the molecular formulas contained only carbon, hydrogen, and oxygen atoms (CHO),  ∼ 30&thinsp;% contained nitrogen (CHNO), and  ∼ 10&thinsp;% contained sulfur (CHOS). The molecular formula compositions of the two wildfire-influenced aerosol samples transported mainly in the free troposphere had relatively low average O∕C ratios (0.48±0.13 and 0.45±0.11) despite the 7–10 days of transport time according to FLEXPART. In contrast, the molecular composition of the North American outflow transported mainly in the boundary layer had a higher average O∕C ratio (0.57±0.17) with 3 days of transport time. To better understand the difference between free tropospheric transport and boundary layer transport, the meteorological conditions along the FLEXPART simulated transport pathways were extracted from the Global Forecast System analysis for the model grids. We used the extracted meteorological conditions and the observed molecular chemistry to predict the relative-humidity-dependent glass transition temperatures (Tg) of the aerosol components. Comparisons of the Tg to the ambient temperature indicated that a majority of the organic aerosol components transported in the free troposphere were more viscous and therefore less susceptible to oxidation than the organic aerosol components transported in the boundary layer. Although the number of observations is limited, the results suggest that biomass burning organic aerosol injected into the free troposphere is more persistent than organic aerosol in the boundary layer having broader implications for aerosol aging.</p

    Repetitive sequence distribution on Saguinus, Leontocebus and Leontopithecus tamarins (Platyrrhine, Primates) by mapping telomeric (TTAGGG) motifs and rDNA loci

    Get PDF
    Tamarins are a distinct group of small sized New World monkeys with complex phylogenetic re-lationships and poorly studied cytogenetic traits. In this study, we applied molecular cytogenetic analyses by fluorescence in situ hybridization with probes specific for telomeric sequences and ri-bosomal DNA loci after DAPI/CMA3 staining on metaphases from five tamarin species, namely Leontocebus fuscicollis, Leontopithecus rosalia, Saguinus geoffroyi, Saguinus mystax and Saguinus oedi-pus, with the aim to investigate the distribution of repetitive sequences and their possible role in genome evolution. Our analyses revealed that all five examined species show similar karyotypes, 2n = 46, which differ mainly in the morphology of chromosome pairs 16–17 and 19–22, due to the diverse distribution of rDNA loci, the amplification of telomeric-like sequences, the presence of heterochromatic blocks and/or putative chromosomal rearrangements, such as inversions. The differences in cytogenetic traits between species of tamarins are discussed in a comparative phy-logenetic framework, and in addition to data from previous studies, we underline synapo-morphies and apomorphisms that appeared during the diversification of this group of New World monkeys

    High molecular weight SOA formation during limonene ozonolysis: insights from ultrahigh-resolution FT-ICR mass spectrometry characterization

    Get PDF
    The detailed molecular composition of laboratory generated limonene ozonolysis secondary organic aerosol (SOA) was studied using ultrahigh-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Approximately 1200 molecular formulas were identified in the SOA over the mass range of 140 to 850 Da. Four characteristic groups of high relative abundance species were observed; they indicate an array of accretion products that retain a large fraction of the limonene skeleton. The identified molecular formulas of each of the groups are related to one another by CH2, O and CH2O homologous series. The CH2 and O homologous series of the low molecular weight (MW) SOA (m/z \u3c 300) are explained with a combination of functionalization and fragmentation of radical intermediates and reactive uptake of gas-phase carbonyls. They include isomerization and elimination reactions of Criegee radicals, reactions between alkyl peroxy radicals, and scission of alkoxy radicals resulting from the Criegee radicals. The presence of compounds with 10–15 carbon atoms in the first group (e.g. C11H18O6) provides evidence for SOA formation by the reactive uptake of gas-phase carbonyls during limonene ozonolysis. The high MW compounds (m/z \u3e 300) were found to constitute a significant number fraction of the identified SOA components. The formation of high MW compounds was evaluated by molecular formula trends, fragmentation analysis of select high MW compounds and a comprehensive reaction matrix including the identified low MW SOA, hydroperoxides and Criegee radicals as building blocks. Although the formation of high MW SOA may occur via a variety of radical and non-radical reaction channels, the combined approach indicates a greater importance of the non-condensation reactions over aldol and ester condensation reaction channels. Among these hemi-acetal reactions appear to be most dominant followed by hydroperoxide and Criegee reaction channels

    Barriers and facilitators to the implementation of nurse’s role in primary care settings: an integrative review

    Get PDF
    Background: The rapid evolution of the epidemiological picture and the recent SARS-COV-2 pandemic has expressed the vulnerabilities of health systems and focuses attention on the population’s needs. The nurse’s figure in the care teams is universally identified; however, the implementation of the role within some care settings turns out to be complex and challenging. This integrative review aims to identify the barriers and facilitators in implementing the role of the nurse in primary care settings. Methods: An integrative review was conducted on the Medline and Cinahl databases until 9 June 2020. Qualitative, quantitative, and Mixed-method research studies were selected to identify studies related to the barriers and facilitators of the nurse’s role in nursing facilities’ primary care. For the extraction of the results, the Consolidating Framework for Research Implementation (CFIR) was used to identify the factors that influence implementation in health care. Results: Following the duplicates’ removal, the search identified 18,257 articles, of which 56 were relevant to the inclusion criteria; therefore, they were included in the summary. The selected studies were conducted in thirteen countries, most from Oceania, Europe, North America, Latin America, and the Caribbean. The barriers reported most frequently concern the nursing profession’s regulatory and regulatory aspects within the contexts of care, cultural and organizational aspects, training, and the transfer of specific skills, which were previously designated to doctors. The facilitators are mainly linked to the nurse’s adaptability to the various contexts of care, recognizing the patient’s role, and the desire to develop multidisciplinary and effective working groups to respond to the health needs of the population in primary care contexts. Conclusion: This review highlighted the main barriers and facilitators in implementing the nurse’s role in primary care settings. These results offer useful elements for stakeholders to identify effective strategies in preparing programs and activities for implementing the nurse’s role, acting on the elements identified as barriers and favouring the aspects that emerge as facilitators

    TESSX: A Mission for Space Exploration with Tethers

    Get PDF
    Tethers offer significant potential for substantially increasing payload mass fraction, increasing spacecraft lifetime, enhancing long-term space travel, and enabling the understanding and development of gravity-dependent technologies required for Moon and Mars exploration. The development of the Tether Electrodynamic Spin-up and Survivability Experiment (TESSX) will support applications relevant to NASA's new exploration initiative, including: artificial gravity generation, formation flying, electrodynamic propulsion, momentum exchange, and multi-amp current collection and emission. Under the broad term TESSX, we are currently evaluating several different tether system configurations and operational modes. The initial results of this work are presented, including hardware development, orbital dynamics simulations, and electrodynamics design and analysis

    Evaluation of organic markers for chemical mass balance source apportionment at the Fresno Supersite

    Get PDF
    International audienceSources of PM2.5 at the Fresno Supersite during high PM2.5 episodes occurring from 15 December 2000?3 February 2001 were estimated with the Chemical Mass Balance (CMB) receptor model. The ability of source profiles with organic markers to distinguish motor vehicle, residential wood combustion (RWC), and cooking emissions was evaluated with simulated data. Organics improved the distinction between gasoline and diesel vehicle emissions and allowed a more precise estimate of the cooking source contribution. Sensitivity tests using average ambient concentrations showed that the gasoline vehicle contribution was not resolved without organics. Organics were not required to estimate hardwood contributions. The most important RWC marker was the water-soluble potassium ion. The estimated cooking contribution did not depend on cholesterol because its concentrations were below the detection limit in most samples. Winter time source contributions were estimated by applying the CMB model to individual and average sample concentrations. RWC was the largest source, contributing 29?31% of measured PM2.5. Hardwood and softwood combustion accounted for 16?17% and 12?15%, respectively. Secondary ammonium nitrate and motor vehicle emissions accounted for 31?33% and 9?15%, respectively. The gasoline vehicle contribution (3?10%) was comparable to the diesel vehicle contribution (5?6%). The cooking contribution was 5?19% of PM2.5. Fresno source apportionment results were consistent with those estimated in previous studies

    Self-attraction effect and correction on three absolute gravimeters

    Full text link
    The perturbations of the gravitational field due to the mass distribution of an absolute gravimeter have been studied. The so called Self Attraction Effect (SAE) is crucial for the measurement accuracy, especially for the International Comparisons, and for the uncertainty budget evaluation. Three instruments have been analysed: MPG-2, FG5-238 and IMPG-02. The SAE has been calculated using a numerical method based on FEM simulation. The observed effect has been treated as an additional vertical gravity gradient. The correction (SAC) to be applied to the computed g value has been associated with the specific height level, where the measurement result is typically reported. The magnitude of the obtained corrections is of order 1E-8 m/s2.Comment: 14 pages, 8 figures, submitted to Metrologi
    corecore