463 research outputs found

    Angiotensin II as an Inducer of Atherosclerosis: Evidence from Mouse Studies

    Get PDF
    Mechanisms responsible for atherosclerotic plaque development, destabilization, and rupture are still largely unknown. Angiotensin II, the main bioactive peptide of renin angiotensin system, has been shown to be critically involved in the pathogenesis of atherosclerosis and vulnerable plaque. Experimental studies in hypercholesterolemic mouse models with high circulating Angiotensin II levels, provide direct evidence that Angiotensin II induces plaque vulnerability partly by 1/ downregulating vascular expression of anti-atherosclerotic genes and/or upregulating expression of pro-atherosclerotic genes, and 2/ skewing the systemic lymphocyte Th1/Th2 balance towards a proinflammatory Th1 response in early disease phase. Further understanding the pro-atherosclerotic mechanisms of Angiotensin II and associated signaling pathways will help to design better therapeutic strategies for reducing the burden of atherosclerotic cardiovascular disease

    Multimodal Supervised Exercise Training Is Effective in Improving Long Term Walking Performance in Patients with Symptomatic Lower Extremity Peripheral Artery Disease.

    Get PDF
    This study aimed to evaluate the effect of a multimodal supervised exercise training (SET) program on walking performance for 12 months in patients with symptomatic lower extremity peripheral artery disease (PAD). Consecutive patients with Fontaine stage II PAD participating in the SET program of our hospital were retrospectively investigated. Walking performance, assessed using a treadmill with measures of the pain-free and maximal walking distance (PFWD, MWD, respectively), and 6 min walking distance (6MWD), were tested before and following SET, as well as at 6 and 12 months after SET completion. Ninety-three symptomatic patients with PAD (65.0 ± 1.1 y) were included in the study. Following SET, the walking performance significantly improved (PFWD: +145%, p ≤ 0.001; MWD: +97%, p ≤ 0.001; 6MWD: +15%, p ≤ 0.001). At 6 months, PFWD (+257%, p ≤ 0.001), MWD (+132%, p ≤ 0.001), and 6MWD (+11%, p ≤ 0.001) remained significantly improved compared with the pre-SET condition. At 12 months, PFWD (+272%, p ≤ 0.001), MWD (+130%, p ≤ 0.001), and 6MWD (+11%, p ≤ 0.001) remained significantly improved compared with the pre-training condition. The walking performance remained significantly improved in both women and men for up to 12 months (p ≤ 0.001). Multimodal SET is effective at improving walking performance in symptomatic patients with PAD, with improvements lasting up to 12 months

    Improvement in 6-Minute Walking Distance after Supervised Exercise Training Is Related to Changes in Quality of Life in Patients with Lower Extremity Peripheral Artery Disease.

    Get PDF
    This study aimed to investigate the relationship between supervised exercise training (SET)-induced changes in treadmill performance and 6 min walking distance, and changes in general (physical and mental) self-perceived health-related quality of life (HRQoL) in symptomatic patients with lower extremity peripheral artery disease (PAD). This is an observational study investigating Fontaine stage II PAD patients participating in 3-month SET. Before and following SET, treadmill performance (pain-free (PFWD) and maximal (MWD)), and 6 min walking distance (6MWD) were assessed. Self-perceived HRQoL was assessed with the Medical Outcomes Study Short-Form 36 (SF-36). Ankle- and toe-brachial indexes were also measured. One-hundred forty-seven patients with PAD were included (64.9 ± 9.6 y, 70% men). After SET, PFWD (+102%, p ≤ 0.001), MWD (+87%, p ≤ 0.001), and 6MWD (+14%, p ≤ 0.001) significantly increased. All eight SF-36 subscale scores significantly improved following SET (p ≤ 0.04). SET significantly improved physical and mental component summaries of the SF-36 (p ≤ 0.001). Larger increases in 6MWD were associated with greater improvements in physical (β = 0.19; p = 0.02) and mental (β = 0.24; p = 0.005) component summaries of the SF-36. No significant relationship was observed between changes in treadmill performance and changes in physical and mental component summaries of the SF-36. These results show that improvements in 6MWD following SET are related to improvements in general self-perceived HRQoL in patients with symptomatic lower extremity PAD. On the contrary, changes in treadmill performance were not related to improvements in HRQoL. These results suggest that the 6 min walking test is an essential outcome measure to assess overall patient functional status following interventions in patients with PAD

    An autonomous biodegradable hygroscopic seed-inspired soft robot for visual humidity sensing

    Get PDF
    Visual sensors for relative humidity (RH) are of interest for distributed and autonomous environmental monitoring. Most of the visual humidity sensors are based on colorimetric sensing through the employment of hygroscopic inorganic pigments or photonic crystals (PCs). However, the toxicity of some inorganic pigments poses a risk to the environment especially if dispersed during in-situ measurements. On the other hand, the angle-dependent structural colours reading of the PCs, make these devices non suitable for autonomous and in-situ environmental monitoring. Here, we report the first visual humidity sensor using an artificial and hygroscopic seed-like robot (I-SeedPel) recently (2023) developed by our group for hygro-driven environmental exploration (https://doi.org/10.1002/advs.202205146). The I-SeedPel design is bioinspired to the hygroscopic and layered tissues of the Pelargonium appendiculatum seed and fabricated through additive manufacturing techniques using biodegradable polymers. The hygro-mechanical response of the I-SeedPel generates a reversible change of the geometrical features in the artificial seed structure (i.e., awn's angular displacement and diameter variation) related to the RH. The variation of the geometric properties can be quantified and correlated to RH in a wide range (30–90 %), with an accuracy of 97–98 %, with a resolution of 0.17–0.52 % of RH and a good reproducibility (average RSD = 14.7 %)

    Prevalence and risk factors for thromboembolic complications in IBD patients

    Get PDF
    Background: Inflammatory bowel disease (IBD) patients have an increased risk of venous thromboembolic complications (VTEC) such as deep vein thrombosis (DVT) and pulmonary embolism when compared to the non-IBD population. However, studies assessing VTEC prevalence in IBD as well as analyses of VTEC associated risk factors are scarce. We aimed to assess VTEC prevalence in IBD patients and to identify associated risk factors. Methods: Data from patients enrolled in the Swiss IBD Cohort Study (SIBDCS) were analyzed. Since 2006 the SIBDCS collects data on a large sample of IBD patients from hospitals and private practices across Switzerland. Results: A  total of 90/2284 (3.94%) IBD patients suffered from VTEC. Of these, 45/1324 (3.4% overall; 2.42% with DVT, 1.51% with PE) had CD, and 45/960 (4.7% overall; 3.23% with DVT, 2.40% with PE) presented with UC

    Voluntary Exercise Stabilizes Established Angiotensin II-Dependent Atherosclerosis in Mice through Systemic Anti-Inflammatory Effects.

    Get PDF
    We have previously demonstrated that exercise training prevents the development of Angiotensin (Ang) II-induced atherosclerosis and vulnerable plaques in Apolipoprotein E-deficient (ApoE-/-) mice. In this report, we investigated whether exercise attenuates progression and promotes stability in pre-established vulnerable lesions. To this end, ApoE-/- mice with already established Ang II-mediated advanced and vulnerable lesions (2-kidney, 1-clip [2K1C] renovascular hypertension model), were subjected to sedentary (SED) or voluntary wheel running training (EXE) regimens for 4 weeks. Mean blood pressure and plasma renin activity did not significantly differ between the two groups, while total plasma cholesterol significantly decreased in 2K1C EXE mice. Aortic plaque size was significantly reduced by 63% in 2K1C EXE compared to SED mice. Plaque stability score was significantly higher in 2K1C EXE mice than in SED ones. Aortic ICAM-1 mRNA expression was significantly down-regulated following EXE. Moreover, EXE significantly down-regulated splenic pro-inflammatory cytokines IL-18, and IL-1β mRNA expression while increasing that of anti-inflammatory cytokine IL-4. Reduction in plasma IL-18 levels was also observed in response to EXE. There was no significant difference in aortic and splenic Th1/Th2 and M1/M2 polarization markers mRNA expression between the two groups. Our results indicate that voluntary EXE is effective in slowing progression and promoting stabilization of pre-existing Ang II-dependent vulnerable lesions by ameliorating systemic inflammatory state. Our findings support a therapeutic role for voluntary EXE in patients with established atherosclerosis

    Physical Performance and Skeletal Muscle Transcriptional Adaptations Are Not Impacted by Exercise Training Frequency in Mice with Lower Extremity Peripheral Artery Disease.

    Get PDF
    Exercise training is an important therapeutic strategy for lower extremity peripheral artery disease (PAD). However, the effects of different exercise frequency on physiological adaptations remain unknown. Thus, this study compared the effects of a 7-week moderate-intensity aerobic training performed either three or five times/week on skeletal muscle gene expression and physical performance in mice with PAD. Hypercholesterolemic male ApoE-deficient mice were subjected to unilateral iliac artery ligation and randomly assigned to sedentary or exercise training regimens either three or five times/week. Physical performance was assessed using a treadmill test to exhaustion. Expression of genes related to glucose and lipid metabolism, mitochondrial biogenesis, muscle fiber-type, angiogenesis, and inflammation was analyzed in non-ischemic and ischemic gastrocnemius muscles by real-time polymerase chain reaction. Physical performance was improved to the same extent in both exercise groups. For gene expression patterns, no statistical differences were observed between three or five times/week exercised mice, both in the non-ischemic and ischemic muscles. Our data show that exercising three to five times a week induces similar beneficial effects on performance. Those results are associated with muscular adaptations that remain identical between the two frequencies

    Gelsolin superfamily proteins: key regulators of cellular functions

    Get PDF
    Abstract.: Cytoskeletal rearrangement occurs in a variety of cellular processes and involves a wide spectrum of proteins. Among these, the gelsolin superfamily proteins control actin organization by severing filaments, capping filament ends and nucleating actin assembly [1]. Gelsolin is the founding member of this family, which now contains at least another six members: villin, adseverin, capG, advillin, supervillin and flightless I. In addition to their respective role in actin filament remodeling, these proteins have some specific and apparently non-overlapping particular roles in several cellular processes, including cell motility, control of apoptosis and regulation of phagocytosis (summarized in table 1). Evidence suggests that proteins belonging to the gelsolin superfamily may be involved in other processes, including gene expression regulation. This review will focus on some of the known functions of the gelsolin superfamily proteins, thus providing a basis for reflection on other possible and as yet incompletely understood roles for these protein

    4D Printing of Humidity-Driven Seed Inspired Soft Robots

    Get PDF
    Geraniaceae seeds represent a role model in soft robotics thanks to their ability to move autonomously across and into the soil driven by humidity changes. The secret behind their mobility and adaptivity is embodied in the hierarchical structures and anatomical features of the biological hygroscopic tissues, geometrically designed to be selectively responsive to environmental humidity. Following a bioinspired approach, the internal structure and biomechanics of Pelargonium appendiculatum (L.f.) Willd seeds are investigated to develop a model for the design of a soft robot. The authors exploit the re-shaping ability of 4D printed materials to fabricate a seed-like soft robot, according to the natural specifications and model, and using biodegradable and hygroscopic polymers. The robot mimics the movement and performances of the natural seed, reaching a torque value of ≈30 µN m, an extensional force of ≈2.5 mN and it is capable to lift ≈100 times its own weight. Driven by environmental humidity changes, the artificial seed is able to explore a sample soil, adapting its morphology to interact with soil roughness and cracks

    Moderate Effects of Hypoxic Training at Low and Supramaximal Intensities on Skeletal Muscle Metabolic Gene Expression in Mice.

    Get PDF
    The muscle molecular adaptations to different exercise intensities in combination with hypoxia are not well understood. This study investigated the effect of low- and supramaximal-intensity hypoxic training on muscle metabolic gene expression in mice. C57BL/6 mice were divided into two groups: sedentary and training. Training consisted of 4 weeks at low or supramaximal intensity, either in normoxia or hypoxia (FiO <sub>2</sub> = 0.13). The expression levels of genes involved in the hypoxia signaling pathway (Hif1a and Vegfa), the metabolism of glucose (Gys1, Glut4, Hk2, Pfk, and Pkm1), lactate (Ldha, Mct1, Mct4, Pdh, and Pdk4) and lipid (Cd36, Fabp3, Ucp2, Hsl, and Mcad), and mitochondrial energy metabolism and biogenesis (mtNd1, mtNd6, CytC, CytB, Pgc1a, Pgc1β, Nrf1, Tfam, and Cs) were determined in the gastrocnemius muscle. No physical performance improvement was observed between groups. In normoxia, supramaximal intensity training caused upregulation of major genes involved in the transport of glucose and lactate, fatty acid oxidation, and mitochondrial biogenesis, while low intensity training had a minor effect. The exposure to hypoxia changed the expression of some genes in the sedentary mice but had a moderate effect in trained mice compared to respective normoxic mice. In hypoxic groups, low-intensity training increased the mRNA levels of Mcad and Cs, while supramaximal intensity training decreased the mRNA levels of Mct1 and Mct4. The results indicate that hypoxic training, regardless of exercise intensity, has a moderate effect on muscle metabolic gene expression in healthy mice
    corecore