11,671 research outputs found

    Oscillatons revisited

    Get PDF
    In this paper, we study some interesting properties of a spherically symmetric oscillating soliton star made of a real time-dependent scalar field which is called an oscillaton. The known final configuration of an oscillaton consists of a stationary stage in which the scalar field and the metric coefficients oscillate in time if the scalar potential is quadratic. The differential equations that arise in the simplest approximation, that of coherent scalar oscillations, are presented for a quadratic scalar potential. This allows us to take a closer look at the interesting properties of these oscillating objects. The leading terms of the solutions considering a quartic and a cosh scalar potentials are worked in the so called stationary limit procedure. This procedure reveals the form in which oscillatons and boson stars may be related and useful information about oscillatons is obtained from the known results of boson stars. Oscillatons could compete with boson stars as interesting astrophysical objects, since they would be predicted by scalar field dark matter models.Comment: 10 pages REVTeX, 10 eps figures. Updated files to match version published in Classical and Quantum Gravit

    On the Space Time of a Galaxy

    Full text link
    We present an exact solution of the averaged Einstein's field equations in the presence of two real scalar fields and a component of dust with spherical symmetry. We suggest that the space-time found provides the characteristics required by a galactic model that could explain the supermassive central object and the dark matter halo at once, since one of the fields constitutes a central oscillaton surrounded by the dust and the other scalar field distributes far from the coordinate center and can be interpreted as a halo. We show the behavior of the rotation curves all along the background. Thus, the solution could be a first approximation of a ``long exposition photograph'' of a galaxy.Comment: 8 pages REVTeX, 11 eps figure

    Entangled coherent states and squeezing in N trapped ions

    Get PDF
    We consider a resonant bichromatic excitation of N trapped ions that generates displacement and squeezing in their collective motion conditioned to their ionic internal state, producing eventually Scrhodinger cat states and entangled squeezing. Furthermore, we study the case of tetrachromatic illumination or producing the so called entangled coherent states in two motional normal modes.Comment: 4 Revtex pages, no figures. To appear in Proceedings of "Mysteries, Puzzles and Paradoxes in Quantum Mechanics", Garda Lake, Italy (2001

    Reliable teleportation in trapped ions

    Full text link
    We study a method for the implementation of a reliable teleportation protocol (theoretically, 100% of success) of internal states in trapped ions. The generation of the quantum channel (any of four Bell states) may be done respecting technical limitations on individual addressing and without claiming the Lamb-Dicke regime. An adequate Bell analyzer, that transforms unitarily the Bell basis into a completely disentangled one, is considered. Probable sources of error and fidelity estimations of the teleportation process are studied. Finally, we discuss experimental issues, proposing a scenario in which the present scheme could be implemented.Comment: 8 Latex pages with five (ps,eps) figures included (EPJ style also included). Accepted for publication in European Physical Journal

    Decoherence, pointer engineering and quantum state protection

    Get PDF
    We present a proposal for protecting states against decoherence, based on the engineering of pointer states. We apply this procedure to the vibrational motion of a trapped ion, and show how to protect qubits, squeezed states, approximate phase eigenstates and superpositions of coherent states.Comment: 1 figur
    corecore