4,689 research outputs found

    First light of the VLT planet finder SPHERE II. The physical properties and the architecture of the young systems PZ Telescopii and HD 1160 revisited

    Get PDF
    Context. The young systemsPZ Tel and HD 1160, hosting known low-mass companions, were observed during the commissioning of the new planet finder of the Very Large Telescope (VLT) SPHERE with several imaging and spectroscopic modes. Aims. We aim to refine the physical properties and architecture of both systems. Methods. We use SPHERE commissioning data and dedicated Rapid Eye Mount (REM) observations, as well as literature and unpublished data from VLT/SINFONI, VLT/NaCo, Gemini/NICI, and Keck/NIRC2. Results. We derive new photometry and confirm the short-term (P = 0.94 d) photometric variability of the star PZ Tel A with values of 0.14 and 0.06 mag at optical and near-infrared wavelengths, respectively. We note from the comparison to literature data spanning 38 yr that the star also exhibits a long-term variability trend with a brightening of ~0.25 mag. The 0.63−3.8 μm spectral energy distribution of PZ Tel B (separation ~25 AU) allows us to revise its physical characteristics: spectral type M7 ± 1, T_(eff) = 2700 ± 100 K, log(g)  0.66). For eccentricities below 0.9, the inclination, longitude of the ascending node, and time of periastron passage are well constrained. In particular, both star and companion inclinations are compatible with a system seen edge-on. Based on “hot-start” evolutionary models, we reject other brown dwarf candidates outside 0.25" for both systems, and giant planet companions outside 0.5" that are more massive than 3 MJ for the PZ Tel system. We also show that K1−K2 color can be used along with YJH low-resolution spectra to identify young L-type companions, provided high photometric accuracy (≤0.05 mag) is achieved. Conclusions. SPHERE opens new horizons in the study of young brown dwarfs and giant exoplanets using direct imaging thanks to high-contrast imaging capabilities at optical (0.5−0.9 μm) and near-infrared (0.95−2.3 μm) wavelengths, as well as high signal-to-noise spectroscopy in the near-infrared domain (0.95−2.3 μm) from low resolutions (R ~ 30−50) to medium resolutions (R ~ 350)

    Analyse du processus d'élaboration d'un projet de simulation

    Get PDF
    International audienceNous présentons dans cet article une étude orientée sur l'analyse du processus d'élaboration d'un projet de simulation de système de production. Après avoir présenté un état de l'art traitant de cette problématique, nous détaillons le cadre d'élaboration d'un processus de simulation à travers la présentation des différentes étapes le constituant ainsi que celle des délivrables qui lui sont associés. Nous donnons ainsi la vision que nous avons de ce processus. L'accent est en particulier mis sur le rôle déterminant de la première étape qui vise à identifier et caractériser le besoin à l'origine du projet de simulation, généralement un problème à résoudre, et à évaluer la capacité de l'outil de simulation à évènements discrets à répondre efficacement à ce besoin. Nous proposons ensuite une classification des outils de simulation actuellement présents sur le marché en fonction de l'approche de modélisation utilisée, à savoir les outils orientés " fonction " ou " processus " et les outils orientés " composant " ou " objet ". Ainsi, après une description assez brève de ces approches de modélisation, nous présentons certains des avantages et des inconvénients de chaque type d'outil par rapport à un point de vue de l'utilisateur potentiel

    The new servo-spill power converter of the CERN SPS machine

    Get PDF
    The so-called servo-spill system of the SPS machine requires a very specific power converter to be used as the power actuator of the system. Due to this particular function, the main performance required, for this power converter, is an unusual large signal current bandwidth of up to 1.5 kHz. The procurement is based on a similar industrial product using switch mode technology. This paper describes the main power part as well as the control approach chosen to fulfil the specific requirements of this power converter. Final operational results are also presented

    Long thoracic nerve release for scapular winging: Clinical study of a continuous series of eight patients

    Get PDF
    SummaryScapular winging secondary to serratus anterior muscle palsy is a rare pathology. It is usually due to a lesion in the thoracic part of the long thoracic nerve following violent upper-limb stretching with compression on the nerve by the anterior branch of thoracodorsal artery at the “crow's foot landmark” where the artery crosses in front of the nerve. Scapular winging causes upper-limb pain, fatigability or impotence. Diagnosis is clinical and management initially conservative. When functional treatment by physiotherapy fails to bring recovery within 6months and electromyography (EMG) shows increased distal latencies, neurolysis may be suggested. Muscle transfer and scapula-thoracic arthrodesis are considered as palliative treatments. We report a single-surgeon experience of nine open neurolyses of the thoracic part of the long thoracic nerve in eight patients. At 6months’ follow-up, no patients showed continuing signs of winged scapula. Control EMG showed significant reduction in distal latency; Constant scores showed improvement, and VAS-assessed pain was considerably reduced. Neurolysis would thus seem to be the first-line surgical attitude of choice in case of compression confirmed on EMG. The present results would need to be confirmed in larger studies with longer follow-up, but this is made difficult by the rarity of this pathology.Level of evidenceIII

    The recent upgrades in the "standard" electromagnetic physics package

    Get PDF
    The current status and the recent developments of Geant4 "Standard" electromagnetic package are presented. The design iteration of the package carried out for the last two years is completed. It provides model versus process structure of the code. The internal database of elements and materials based on the NIST databases is introduced inside the Geant4 toolkit as well. The focus of recent activities is on upgrade of physics models and on validation of simulation results. The significant revisions were done for ionistion models, for models for transition radiation, and multiple scattering models, which are presented in this work. The acceptance suite evolution is also discussed

    Search for cool giant exoplanets around young and nearby stars - VLT/NaCo near-infrared phase-coronagraphic and differential imaging

    Full text link
    [Abridged] Context. Spectral differential imaging (SDI) is part of the observing strategy of current and future high-contrast imaging instruments. It aims to reduce the stellar speckles that prevent the detection of cool planets by using in/out methane-band images. It attenuates the signature of off-axis companions to the star, such as angular differential imaging (ADI). However, this attenuation depends on the spectral properties of the low-mass companions we are searching for. The implications of this particularity on estimating the detection limits have been poorly explored so far. Aims. We perform an imaging survey to search for cool (Teff<1000-1300 K) giant planets at separations as close as 5-10 AU. We also aim to assess the sensitivity limits in SDI data taking the photometric bias into account. This will lead to a better view of the SDI performance. Methods. We observed a selected sample of 16 stars (age < 200 Myr, d < 25 pc) with the phase-mask coronagraph, SDI, and ADI modes of VLT/NaCo. Results. We do not detect any companions. As for the sensitivity limits, we argue that the SDI residual noise cannot be converted into mass limits because it represents a differential flux, unlike the case of single-band images. This results in degeneracies for the mass limits, which may be removed with the use of single-band constraints. We instead employ a method of directly determining the mass limits. The survey is sensitive to cool giant planets beyond 10 AU for 65% and 30 AU for 100% of the sample. Conclusions. For close-in separations, the optimal regime for SDI corresponds to SDI flux ratios >2. According to the BT-Settl model, this translates into Teff<800 K. The methods described here can be applied to the data interpretation of SPHERE. We expect better performance with the dual-band imager IRDIS, thanks to more suitable filter characteristics and better image quality.Comment: 19 pages, 16 figures, accepted for publication in A&A, version including language editin

    Search for cool extrasolar giant planets combining coronagraphy, spectral and angular differential imaging

    Full text link
    Spectral differential imaging (SDI) is part of the observing strategy of current and on-going high-contrast imaging instruments on ground-based telescopes. Although it improves the star light rejection, SDI attenuates the signature of off-axis companions to the star, just like angular differential imaging (ADI). However, the attenuation due to SDI has the peculiarity of being dependent on the spectral properties of the companions. To date, no study has investigated these effects. Our team is addressing this problem based on data from a direct imaging survey of 16 stars combining the phase-mask coronagraph, the SDI and the ADI modes of VLT/NaCo. The objective of the survey is to search for cool (Teff<1000-1300 K) giant planets at separations of 5-10 AU orbiting young, nearby stars (<200 Myr, <25 pc). The data analysis did not yield any detections. As for the estimation of the sensitivity limits of SDI-processed images, we show that it requires a different analysis than that used in ADI-based surveys. Based on a method using the flux predictions of evolutionary models and avoiding the estimation of contrast, we determine directly the mass sensitivity limits of the survey for the ADI processing alone and with the combination of SDI and ADI. We show that SDI does not systematically improve the sensitivity due to the spectral properties and self-subtraction of point sources.Comment: 5 pages, 2 figure

    Measurement of the electron drift velocity for directional dark matter detectors

    Full text link
    Three-dimensional track reconstruction is a key issue for directional Dark Matter detection. It requires a precise knowledge of the electron drift velocity. Magboltz simulations are known to give a good evaluation of this parameter. However, large TPC operated underground on long time scale may be characterized by an effective electron drift velocity that may differ from the value evaluated by simulation. In situ measurement of this key parameter is hence a way to avoid bias in the 3D track reconstruction. We present a dedicated method for the measurement of the electron drift velocity with the MIMAC detector. It is tested on two gas mixtures : CF4\rm CF_4 and CF4+CHF3\rm CF_4+CHF_3. We also show that adding CHF3\rm CHF_3 allows us to lower the electron drift velocity while keeping almost the same Fluorine content of the gas mixture.Comment: Proceedings of the 4th international conference on Directional Detection of Dark Matter (CYGNUS 2013), 10-12 June 2013, Toyama, Japa

    In situ measurement of the electron drift velocity for upcoming directional Dark Matter detectors

    Full text link
    Three-dimensional track reconstruction is a key issue for directional Dark Matter detection and it requires a precise knowledge of the electron drift velocity. Magboltz simulations are known to give a good evaluation of this parameter. However, large TPC operated underground on long time scale may be characterized by an effective electron drift velocity that may differ from the value evaluated by simulation. In situ measurement of this key parameter is hence needed as it is a way to avoid bias in the 3D track reconstruction. We present a dedicated method for the measurement of the electron drift velocity with the MIMAC detector. It is tested on two gas mixtures: CF4 and CF4 + CHF3. The latter has been chosen for the MIMAC detector as we expect that adding CHF3 to pure CF4 will lower the electron drift velocity. This is a key point for directional Dark Matter as the track sampling along the drift field will be improved while keeping almost the same Fluorine content of the gas mixture. We show that the drift velocity at 50 mbar is reduced by a factor of about 5 when adding 30% of CHF3.Comment: 19 pages, 14 figures. Minor corrections, matches published version in JINS

    A Replica Inference Approach to Unsupervised Multi-Scale Image Segmentation

    Full text link
    We apply a replica inference based Potts model method to unsupervised image segmentation on multiple scales. This approach was inspired by the statistical mechanics problem of "community detection" and its phase diagram. Specifically, the problem is cast as identifying tightly bound clusters ("communities" or "solutes") against a background or "solvent". Within our multiresolution approach, we compute information theory based correlations among multiple solutions ("replicas") of the same graph over a range of resolutions. Significant multiresolution structures are identified by replica correlations as manifest in information theory overlaps. With the aid of these correlations as well as thermodynamic measures, the phase diagram of the corresponding Potts model is analyzed both at zero and finite temperatures. Optimal parameters corresponding to a sensible unsupervised segmentation correspond to the "easy phase" of the Potts model. Our algorithm is fast and shown to be at least as accurate as the best algorithms to date and to be especially suited to the detection of camouflaged images.Comment: 26 pages, 22 figure
    corecore