92 research outputs found

    Phospho-HDAC6 Gathers Into Protein Aggregates in Parkinson’s Disease and Atypical Parkinsonisms

    Get PDF
    HDAC6 is a unique histone deacetylase that targets cytoplasmic non-histone proteins and has a specific ubiquitin-binding activity. Both of these activities are required for HDAC6-mediated formation of aggresomes, which contain misfolded proteins that will ultimately be degraded via autophagy. HDAC6 deacetylase activity is increased following phosphorylation on serine 22 (phospho-HDAC6). In human, HDAC6 localizes in neuronal Lewy bodies in Parkinson\u2019s disease (PD) and in oligodendrocytic Papp\u2013Lantos bodies in multiple system atrophy (MSA). However, the expression of phospho-HDAC6 in post-mortem human brains is currently unexplored. Here, we evaluate and compare the distribution of HDAC6 and its phosphorylated form in human brains obtained from patients affected by three forms of parkinsonism: two synucleinopathies (PD and MSA) and a tauopathy (progressive supranuclear palsy, PSP). We find that both HDAC6 and its phosphorylated form localize with pathological protein aggregates, including \u3b1-synuclein-positive Lewy bodies in PD and Papp\u2013Lantos bodies in MSA, and phospho-tau-positive neurofibrillary tangles in PSP. We further find a direct interaction of HDAC6 with \u3b1-synuclein with proximity ligation assay (PLA) in neuronal cell of PD patients. Taken together, our findings suggest that both HDAC6 and phospho-HDAC6 regulate the homeostasis of intra-neuronal proteins in parkinsonism

    Methylprednisolone neutralizes the beneficial effects of erythropoietin in experimental spinal cord injury

    Get PDF
    Inflammation plays a major pathological role in spinal cord injury (SCI). Although antiinflammatory treatment using the glucocorticoid methyprednisolone sodium succinate (MPSS) improved outcomes in several multicenter clinical trials, additional clinical experience suggests that MPSS is only modestly beneficial in SCI and poses a risk for serious complications. Recent work has shown that erythropoietin (EPO) moderates CNS tissue injury, in part by reducing inflammation, limiting neuronal apoptosis, and restoring vascular autoregulation. We determined whether EPO and MPSS act synergistically in SCI. Using a rat model of contusive SCI, we compared the effects of EPO [500-5,000 units/kg of body weight (kg-bw)] with MPSS (30 mg/kg-bw) for proinflammatory cytokine production, histological damage, and motor function at 1 month after a compression injury. Although high-dose EPO and MPSS suppressed proinflarnmatory cytokines within the injured spinal cord, only EPO was associated with reduced microglial infiltration, attenuated scar formation, and sustained neurological improvement. Unexpectedly, coadministration of MPSS antagonized the protective effects of EPO, even though the EPO receptor was up-regulated normally after injury. These data illustrate that the suppression of proinflammatory cytokines alone does not necessarily prevent secondary injury and suggest that glucocorticoids should not be coadministered in clinical trials evaluating the use of EPO for treatment of SCI

    Evaluation of zona pellucida birefringence intensity during in vitro maturation of oocytes from stimulated cycles

    Get PDF
    Background: This study evaluated whether there is a relationship between the zona pellucida birefringence (ZP-BF) intensity and the nuclear (NM) and cytoplasmic (CM) in vitro maturation of human oocytes from stimulated cycles.Results: The ZP-BF was evaluated under an inverted microscope with a polarizing optical system and was scored as high/positive (when the ZP image presented a uniform and intense birefringence) or low/negative (when the image presented moderate and heterogeneous birefringence). CM was analyzed by evaluating the distribution of cortical granules (CGs) throughout the ooplasm by immunofluorescence staining. CM was classified as: complete, when CG was localized in the periphery; incomplete, when oocytes presented a cluster of CGs in the center; or in transition, when oocytes had both in clusters throughout cytoplasm and distributed in a layer in the cytoplasm periphery Nuclear maturation: From a total of 83 germinal vesicle (GV) stage oocytes, 58 of oocytes (69.9%) reached NM at the metaphase II stage. From these 58 oocytes matured in vitro, the high/positively scoring ZP-BF was presented in 82.7% of oocytes at the GV stage, in 75.8% of oocytes when at the metaphase I, and in 82.7% when oocytes reached MII. No relationship was observed between NM and ZP-BF positive/negative scores (P = 0.55). These variables had a low Pearson's correlation coefficient (r = 0.081). Cytoplasmic maturation: A total of 85 in vitro-matured MII oocytes were fixed for CM evaluation. Forty-nine oocytes of them (57.6%) showed the complete CM, 30 (61.2%) presented a high/positively scoring ZP-BF and 19 (38.8%) had a low/negatively scoring ZP-BF. From 36 oocytes (42.3%) with incomplete CM, 18 (50%) presented a high/positively scoring ZPBF and 18 (50%) had a low/negatively scoring ZP-BF. No relationship was observed between CM and ZP-BF positive/negative scores (P = 0.42). These variables had a low Pearson's correlation coefficient (r = 0.11).Conclusions: The current study demonstrated an absence of relationship between ZP-BF high/positive or low/negative score and nuclear and cytoplasmic in vitro maturation of oocytes from stimulation cycles

    Release of sICAM-1 in Oocytes and In Vitro Fertilized Human Embryos

    Get PDF
    Background: During the last years, several studies have reported the significant relationship between the production of soluble HLA-G molecules (sHLA-G) by 48–72 hours early embryos and an increased implantation rate in IVF protocols. As consequence, the detection of HLA-G modulation was suggested as a marker to identify the best embryos to be transferred. On the opposite, no suitable markers are available for the oocyte selection. Methodology/Principal Findings: The major finding of the present paper is that the release of ICAM-1 might be predictive of oocyte maturation. The results obtained are confirmed using three independent methodologies, such as ELISA, Bio-Plex assay and Western blotting. The sICAM-1 release is very high in immature oocytes, decrease in mature oocytes and become even lower in in vitro fertilized embryos. No significant differences were observed in the levels of sICAM-1 release between immature oocytes with different morphological characteristics. On the contrary, when the mature oocytes were subdivided accordingly to morphological criteria, the mean sICAM-I levels in grade 1 oocytes were significantly decreased when compared to grade 2 and 3 oocytes. Conclusions/Significance: The reduction of the number of fertilized oocytes and transferred embryos represents the main target of assisted reproductive medicine. We propose sICAM-1 as a biochemical marker for oocyte maturation and grading

    Raman micro-spectroscopy can be used to investigate the developmental stage of the mouse oocyte

    Get PDF
    In recent years, the uptake of assisted reproductive techniques such as in vitro fertilisation has risen exponentially. However, there is much that is still not fully understood about the biochemical modifications that take place during the development and maturation of the oocyte. As such, it is essential to further the understanding of how oocyte manipulation during these procedures ultimately affects its developmental potential; yet, there are few methods currently available which are capable of providing a quantitative measure of oocyte quality. Raman spectroscopy enables investigation of the global biochemical profile of intact cells without the need for labelling. Here, Raman spectra were acquired from the ooplasm of mouse oocytes at various stages of development, from late pre-antral follicles, collected after in vitro maturation within their ovarian follicles and from unstimulated and stimulated ovulatory cycles. Using a combination of univariate and multivariate statistical methods, it was found that ooplasm lipid content could be used to discriminate between different stages of oocyte development. Furthermore, the spectral profiles of mature oocytes revealed that oocytes which have developed in vitro are protein-deficient when compared to in vivo grown oocytes. Finally, the ratio of two Raman peak intensities, namely 1605:1447 cm21, used as a proxy for the protein-to-lipid ratio of the ooplasm, was shown to be indicative of the oocyte’s quality. Together, results indicate that Raman spectroscopy may present an alternative analytical tool fo

    Blood Cell Mitochondrial DNA Content and Premature Ovarian Aging.

    Get PDF
    Primary ovarian insufficiency (POI) is a critical fertility defect characterized by an anticipated and silent impairment of the follicular reserve, but its pathogenesis is largely unexplained. The frequent maternal inheritance of POI together with a remarkable dependence of ovarian folliculogenesis upon mitochondrial biogenesis and bioenergetics suggested the possible involvement of a generalized mitochondrial defect. Here, we verified the existence of a significant correlation between blood and ovarian mitochondrial DNA (mtDNA) content in a group of women undergoing ovarian hyperstimulation (OH), and then aimed to verify whether mtDNA content was significantly altered in the blood cells of POI women. We recruited 101 women with an impaired ovarian reserve: 59 women with premature ovarian failure (POF) and 42 poor responders (PR) to OH. A Taqman copy number assay revealed a significant mtDNA depletion (P<0.001) in both POF and PR women in comparison with 43 women of similar age and intact ovarian reserve, or 53 very old women with a previous physiological menopause. No pathogenic variations in the mitochondrial DNA polymerase γ (POLG) gene were detected in 57 POF or PR women with low blood mtDNA content. In conclusion, blood cell mtDNA depletion is a frequent finding among women with premature ovarian aging, suggesting that a still undetermined but generalized mitochondrial defect may frequently predispose to POI which could then be considered a form of anticipated aging in which the ovarian defect may represent the first manifestation. The determination of mtDNA content in blood may become an useful tool for the POI risk prediction

    Muscle reinnervation and IGF-I synthesis are affected by exposure to heparin: an effect partially antagonized by anti-growth hormone-releasing hormone

    No full text
    Sciatic nerve crush was performed in 2-day-old rats, then reinnervation of the extensor digitorum longus muscle, motor neuron survival, and muscle IGF-I production were monitored. In saline-treated rats, the extent of reinnervation was around 50% and the number of EDL reinnervating motor neurons was significantly reduced. In heparin-treated rats the extent of muscle reinnervation, the recovery of nerve-evoked muscle twitch tension, and the number of motor neurons reinnervating the extensor digitorum longus muscle were greatly enhanced compared to saline-treated rats. In addition, treatment with heparin increased markedly insulin-like growth factor-I levels in denervated muscles. The concomitant exposure to anti-growth hormone releasing hormone partially abolished the stimulatory action of heparin on muscle reinnervation and prevented the increase of insulin-like growth factor-I muscle levels

    Co-administration of IGF-I and glycosaminoglycans greatly delays motor neuron disease and affects IGF-I expression in the wobbler mouse : a long term study

    No full text
    The study on wobbler mouse has shown that the combined treatment with low doses of glycosaminoglycans (GAGs) and insulin-like growth factor-I (IGF-I) fully prevented motor neurone death and forelimb impairment up to 9-12 weeks of a mouse's life. The effect was accompanied by the prevention of the early hypertrophy of wobbler neurones, an effect likely due to the promotion of neuronal survival. At the 18th week, wobbler mice treated with IGF-I + GAGs still showed significantly improved forelimb function, reduced muscle atrophy and a higher number of cervical motor neurones. IGF-I alone and GAGs alone were active up to the 3rd week of treatment; thereafter the beneficial effects of single treatments decreased drastically. GAGs and IGF-I treatments also affected IGF-I plasma and muscle levels. In wobbler mice there was a progressive reduction in IGF-I plasma levels that was prevented by IGF-I or GAGs alone and greatly increased, even above heterozygote levels, by the combination treatment. Such a powerful increase was correlated by a small enhancement in insulin-like growth factor binding protein-3 (IGFBP-3) plasma levels, while treatment with IGF-I alone affected very significantly both IGFBP-1 and IGFBP-3. Co-treatment also prevented the decrease in IGF-I content observed in vehicle-treated wobbler mice forelimb muscles

    Laboratory studies using electrical resistivity tomography and fiber optic techniques to detect seepage zones in river embankments

    Get PDF
    We present the results of laboratory experiments on a down-scaled river levee constructed with clayey material collected from a river embankment where a permanent resistivity instrument has operated since 2015. To create potential seepages through the levee, two zones (5 7 4 cm and 10 7 2 cm) were filled with sand during the levee construction. Electrical resistivity tomography (ERT) technique and Fiber Bragg Grating (FBG) technology were used to study time-lapse variations due to seepage. The ERT profile was spread on the levee crest and the Wenner array with unit electrode spacing a = 3 cm was used. Six organic modified ceramics (ORMOCER) coated 250 \ub5m-diameter fibers were deployed in different parts of the levee. Time-lapse measurements were performed for both techniques from the beginning of each experiment when water was added to the river side until the water was continuously exiting from the seepage zones. The results showed that ERT images could detect seepages from the early stages. Although with a short delay compared to ERT, fiber optic sensors also showed their ability to detect water infiltrations by measuring temperature changes. Both technologies being successful, a discussion about respective peculiarities and pros and cons is proposed to suggest some criteria in choosing the proper technique according to the specific needs

    Erythropoietin-mediated preservation of the white matter in rat spinal cord injury

    No full text
    We investigated the effect of a single administration of recombinant human erythropoietin (rhEPO) on the preservation of the ventral white matter of rats at four weeks after contusive spinal cord injury (SCI), a time at which functional recovery is significantly improved in comparison to the controls (Gorio et al., 2002, 2005). Specifically, we examined, by morphological and cytochemical methods combined with light, confocal and electron microscopy, i) myelin preservation, ii) activation of adult oligodendrocyte progenitors (OPCs) identified for the expression of NG2 transmembrane proteoglycan, iii) changes in the amount of the chondroitin sulfate proteoglycans neurocan, versican and phosphacan and of their glycosaminoglycan component labeled with Wisteria floribunda lectin, and iv) ventral horn density of the serotonergic plexus as a marker of descending motor control axons. Injured rats received either saline or a single dose of rhEPO within 30 minutes after SCI. The results showed that the significant improvement of functional outcome observed in rhEPO-treated rats was associated with a better preservation of myelin in the ventral white matter. Moreover, the significant increase of both the number of NG2-positive OPCs and the labeling for Nogo-A, a marker of differentiated oligodendrocytes, suggested that rhEPO treatment could result in the generation of new myelinating oligodendrocytes. Sparing of fiber tracts in the ventral white matter was confirmed by the increased density of the serotonergic plexus around motor neurons. As for chondroitin sulfate proteoglycans, only phosphacan, increased in saline-treated rats, returned to normal levels in rhEPO group, probably reflecting a better maintenance of glial-axolemmal relationships along nerve fibers. In conclusion, this investigation expands previous studies supporting the pleiotropic neuroprotective effect of rhEPO on secondary degenerative response and its therapeutic potential for the treatment of SCI and confirms that the preservation of the ventral white matter, which contains descending motor pathways, may be critical for limiting functional deficit
    • …
    corecore