3,062 research outputs found

    An Experimental Investigation of Helicopter Rotor Hub Fairing Drag Characteristics

    Get PDF
    A study was done in the NASA 14- by 22-Foot Wind Tunnel at Langley Research Center on the parasite drag of different helicopter rotor hub fairings and pylons. Parametric studies of hub-fairing camber and diameter were conducted. The effect of hub fairing/pylon clearance on hub fairing/pylon mutual interference drag was examined in detail. Force and moment data are presented in tabular and graphical forms. The results indicate that hub fairings with a circular-arc upper surface and a flat lower surface yield maximum hub drag reduction; and clearance between the hub fairing and pylon induces high mutual-interference drag and diminishes the drag-reduction benefit obtained using a hub fairing with a flat lower surface. Test data show that symmetrical hub fairings with circular-arc surfaces generate 74 percent more interference drag than do cambered hub fairings with flat lower surfaces, at moderate negative angle of attack

    A Modified Balcik Last Mile Distribution Model for Relief Operations Using Open Road Networks

    Get PDF
    The last mile in disaster relief distribution chain is the delivery of goods from a central warehouse to the evacuation centers assigned for a given area. Its effectiveness relies on the proper allocation of each kind of relief good amongst the demand areas on a given frequency. Because these operations involve a limited supply of relief goods, vehicles, and time, it is important to optimize these operations to satisfy as much demand as possible. The study aims to create a linear programming model which provides a set of recommendations on how the current disaster relief supply chain may be carried out, specifically on how distribution operations allocate supplies among demand nodes as well as the routes taken in a day. The areas visited per day would depend on the capacity of the vehicle fleet as well as on the routes that can be used. This linear programming model will use Balcik’s last mile distribution model, while modifying it for the relief operations in the Philippines. The model minimizes routing costs as well as penalty costs for unsatisfied demands. Map data is used for determining routes and historical data from previous disasters are used to determine the supply and demand for relief goods while providing a benchmark for results. The model produces recommendations for (1) Demand node schedule, (2) Best route for schedule, (3) Relief good allocation, and (4) Operational costs. It also provides the computational backbone for relief distribution decisions in the Philippines, allowing for more optimal operations in the future

    Artifact Rejection Methodology Enables Continuous, Noninvasive Measurement of Gastric Myoelectric Activity in Ambulatory Subjects.

    Get PDF
    The increasing prevalence of functional and motility gastrointestinal (GI) disorders is at odds with bottlenecks in their diagnosis, treatment, and follow-up. Lack of noninvasive approaches means that only specialized centers can perform objective assessment procedures. Abnormal GI muscular activity, which is coordinated by electrical slow-waves, may play a key role in symptoms. As such, the electrogastrogram (EGG), a noninvasive means to continuously monitor gastric electrical activity, can be used to inform diagnoses over broader populations. However, it is seldom used due to technical issues: inconsistent results from single-channel measurements and signal artifacts that make interpretation difficult and limit prolonged monitoring. Here, we overcome these limitations with a wearable multi-channel system and artifact removal signal processing methods. Our approach yields an increase of 0.56 in the mean correlation coefficient between EGG and the clinical "gold standard", gastric manometry, across 11 subjects (p < 0.001). We also demonstrate this system's usage for ambulatory monitoring, which reveals myoelectric dynamics in response to meals akin to gastric emptying patterns and circadian-related oscillations. Our approach is noninvasive, easy to administer, and has promise to widen the scope of populations with GI disorders for which clinicians can screen patients, diagnose disorders, and refine treatments objectively

    Energy distribution and cooling of a single atom in an optical tweezer

    Full text link
    We investigate experimentally the energy distribution of a single rubidium atom trapped in a strongly focused dipole trap under various cooling regimes. Using two different methods to measure the mean energy of the atom, we show that the energy distribution of the radiatively cooled atom is close to thermal. We then demonstrate how to reduce the energy of the single atom, first by adiabatic cooling, and then by truncating the Boltzmann distribution of the single atom. This provides a non-deterministic way to prepare atoms at low microKelvin temperatures, close to the ground state of the trapping potential.Comment: 9 pages, 6 figures, published in PR

    Testing and Improving a UAV-Based System Designed for Wetland Methane Source Measurements

    Get PDF
    Wetlands are the single highest emitting methane source category, but the magnitude of wetland fluxes remains difficult to fully characterize due to their large spatial extent and heterogeneity. Fluxes can vary with land surface conditions, vegetation type, and seasonal changes in environmental conditions. Unmanned aerial vehicles (UAVs) are an emerging platform to better characterize spatial variability in these natural ecosystems. While presenting some advantages over traditional techniques like towers and flux chambers, in that they are mobile vertically and horizontally, their use is still challenging, requiring continued improvement in sensor technology and field measurement approaches. In this work, we employ a small, fast response laser spectrometer on a Matrice 600 hexacopter. The system was previously deployed successfully for 40 flights conducted in a four-day period in 2018 near Fairbanks, Alaska. These flights revealed several potential areas for improvement, including: vertical positioning accuracy, the need for sensor health indicators, and approaches to deal with low wind speeds. An additional set of flights was conducted this year near Antioch in California. Flights were conducted several meters above ground up to 15-25 m in a curtain pattern. These curtains were flown both upwind and downwind of a tower site, allowing us to calculate a mass balance methane flux estimate that can be compared to eddy covariance fluxes from the tower. Testing will better characterize the extent to which altitude drifts in-flight and how GPS values compare with measurements from the onboard LIDAR, as well as the agreement between two-dimensional wind speed and direction on the ground versus measured onboard the UAV. Hardware improvements to the sensor and GPS are being considered to help reduce these sources of uncertainty. Results of this testing and how system performance relates to needs for quantifying wetland fluxes, will be presented

    Interaction of the oncoprotein transcription factor MYC with its chromatin cofactor WDR5 is essential for tumor maintenance.

    Get PDF
    The oncoprotein transcription factor MYC is overexpressed in the majority of cancers. Key to its oncogenic activity is the ability of MYC to regulate gene expression patterns that drive and maintain the malignant state. MYC is also considered a validated anticancer target, but efforts to pharmacologically inhibit MYC have failed. The dependence of MYC on cofactors creates opportunities for therapeutic intervention, but for any cofactor this requires structural understanding of how the cofactor interacts with MYC, knowledge of the role it plays in MYC function, and demonstration that disrupting the cofactor interaction will cause existing cancers to regress. One cofactor for which structural information is available is WDR5, which interacts with MYC to facilitate its recruitment to chromatin. To explore whether disruption of the MYC-WDR5 interaction could potentially become a viable anticancer strategy, we developed a Burkitt\u27s lymphoma system that allows replacement of wild-type MYC for mutants that are defective for WDR5 binding or all known nuclear MYC functions. Using this system, we show that WDR5 recruits MYC to chromatin to control the expression of genes linked to biomass accumulation. We further show that disrupting the MYC-WDR5 interaction within the context of an existing cancer promotes rapid and comprehensive tumor regression in vivo. These observations connect WDR5 to a core tumorigenic function of MYC and establish that, if a therapeutic window can be established, MYC-WDR5 inhibitors could be developed as anticancer agents

    The Mayer Hashi Large-Scale Program to Increase Use of Long-Acting Reversible Contraceptives and Permanent Methods in Bangladesh: Explaining the Disappointing Results. An Outcome and Process Evaluation

    Get PDF
    Background: Bangladesh has achieved a low total fertility rate of 2.3. Two-thirds of currently married women of reproductive age (CMWRA) want to limit fertility, and many women achieve their desired fertility before age 30. The incidence of unintended pregnancy and pregnancy termination is high, however. Long-acting reversible contraceptives (LARCs), consisting of the intrauterine device and implant, and permanent methods (PM), including female sterilization and vasectomy, offer several advantages in this situation, but only 8% of CMWRA or 13% of method users use these methods. Program: The Mayer Hashi (MH) program (2009–2013) aimed to improve access to and the quality of LARC/PM services in 21 of the 64 districts in Bangladesh. It was grounded in the SEED (supply–enabling environment–demand) Programming Model. Supply improvements addressed provider knowledge and skills, system strengthening, and logistics. Creating an enabling environment involved holding workshops with local and community leaders, including religious leaders, to encourage them to help promote demand for LARCs and PMs and overcome cultural barriers. Demand promotion encompassed training of providers in counseling, distribution of behavior change communication materials in the community and in facilities, and community mobilization. Methods: We selected 6 MH program districts and 3 nonprogram districts to evaluate the program. We used a before– after and intervention–comparison design to measure the changes in key contraceptive behavior outcomes, and we used a difference-in-differences (DID) specification with comparison to the nonprogram districts to capture the impact of the program. In addition to the outcome evaluation, we considered intermediate indicators that measured the processes through which the interventions were expected to affect the use of LARCs and PMs. Results: The use of LARCs/PMs among CMWRA increased between 2010 and 2013 in both program (from 5.3% to 7.5%) and nonprogram (from 5.0% to 8.9%) districts, but the rate of change was higher in the nonprogram districts. Client–provider interaction and exposure to LARCs/PMs were lower in the program than nonprogram districts, and the MH program districts had higher vacancies of key providers than the nonprogram areas, both indications of a more difficult health system environment. Conclusion: The weaknesses in the health system in the MH districts apparently undermined the effectiveness of the program. More attention to system weaknesses, such as additional supportive supervision for providers, might have improved the outcome
    • …
    corecore