49,794 research outputs found

    Proficient replication of the yeast genome by a viral DNA polymerase

    Get PDF
    DNA replication in eukaryotic cells requires minimally three B-family DNA polymerases: Pol α, Pol δ, and Pol ϵ. Pol δ replicates and matures Okazaki fragments on the lagging strand of the replication fork. Saccharomyces cerevisiae Pol δ is a three-subunit enzyme (Pol3-Pol31-Pol32). A small C-terminal domain of the catalytic subunit Pol3 carries both iron-sulfur cluster and zinc-binding motifs, which mediate interactions with Pol31, and processive replication with the replication clamp proliferating cell nuclear antigen (PCNA), respectively. We show that the entire N-terminal domain of Pol3, containing polymerase and proofreading activities, could be effectively replaced by those from bacteriophage RB69, and could carry out chromosomal DNA replication in yeast with remarkable high fidelity, provided that adaptive mutations in the replication clamp PCNA were introduced. This result is consistent with the model that all essential interactions for DNA replication in yeast are mediated through the small C-terminal domain of Pol3. The chimeric polymerase carries out processive replication with PCNA in vitro; however, in yeast, it requires an increased involvement of the mutagenic translesion DNA polymerase ζ during DNA replication

    Economic system dynamics

    Get PDF
    We provide the reader with a qualitative summary of the main ideas from econophysics and finance theory, starting with a thorough criticism of the standard ideas taught in typical economics textbooks. The emphasis is on the Galilean or physicists' approach to market synamics, as opposed to the standard nonempirical postulatory one.Utility; equilibrium; supply and demand curves; business cycles; market dynamics

    Transient modeling of the thermohydraulic behavior of high temperature heat pipes for space reactor applications

    Get PDF
    Many proposed space reactor designs employ heat pipes as a means of conveying heat. Previous researchers have been concerned with steady state operation, but the transient operation is of interest in space reactor applications due to the necessity of remote startup and shutdown. A model is being developed to study the dynamic behavior of high temperature heat pipes during startup, shutdown and normal operation under space environments. Model development and preliminary results for a hypothetical design of the system are presented

    A Performance Analysis of Folding Conformal Propeller Blade Designs

    Get PDF
    NASAs X-57 Maxwell flight demonstrator has a high-lift system that includes 12 fixed- pitch high-lift propellers located upstream of the wing leading edge for lift augmentation at low speeds. These high-lift propellers are only required at low speeds, and to reduce drag, the propeller blades are folded conformally along the nacelles at other operating conditions. The method of designing the high-lift blades permits several variations of blade cross-section placement along the nacelle surface and a comparative performance analysis was needed to determine if any particular design showed significant benefits. We analyzed the performance of three conformal high-lift propeller designs and compared them to that of a non-conformal baseline propeller to establish both the benefit of stowable blades and the value of each variation. In this study, we first performed a drag analysis of each design in the stowed configuration at the X-57 cruise speed and altitude to determine the drag benefits of each conforming method. Then, among blade designs we compared the thrust, power, and lift for a given input shaft speed to establish any performance losses from the baseline. This analysis shows that the conformal blade designs do not have any appreciable performance losses compared to the baseline blades. Moreover, although the drag in the cruise condition is significantly less than for the non-folding baseline, the drag benefits of each conforming blade approach are similar and the value of each approach largely depends on the ease of integration into the nacelle. This paper presents the results of these studies and discusses the benefits and drawbacks of implementing the conformal blade designs. Specifically, we demonstrate that folding, conformal propeller blades contribute significantly less to cruise drag when compared to windmilling, with an increase relative to a. We also show a less than 1% difference in performance formal, folding propellers and the non-conforming baseline propeller

    Rule-based simulation models

    Get PDF
    Procedural modeling systems, rule based modeling systems, and a method for converting a procedural model to a rule based model are described. Simulation models are used to represent real time engineering systems. A real time system can be represented by a set of equations or functions connected so that they perform in the same manner as the actual system. Most modeling system languages are based on FORTRAN or some other procedural language. Therefore, they must be enhanced with a reaction capability. Rule based systems are reactive by definition. Once the engineering system has been decomposed into a set of calculations using only basic algebraic unary operations, a knowledge network of calculations and functions can be constructed. The knowledge network required by a rule based system can be generated by a knowledge acquisition tool or a source level compiler. The compiler would take an existing model source file, a syntax template, and a symbol table and generate the knowledge network. Thus, existing procedural models can be translated and executed by a rule based system. Neural models can be provide the high capacity data manipulation required by the most complex real time models

    Biophysics of magnetic orientation: strengthening the interface between theory and experimental design

    Get PDF
    The first demonstrations of magnetic effects on the behaviour of migratory birds and homing pigeons in laboratory and field experiments, respectively, provided evidence for the longstanding hypothesis that animals such as birds that migrate and home over long distances would benefit from possession of a magnetic sense. Subsequent identification of at least two plausible biophysical mechanisms for magnetoreception in animals, one based on biogenic magnetite and another on radical-pair biochemical reactions, led to major efforts over recent decades to test predictions of the two models, as well as efforts to understand the ultrastructure and function of the possible magnetoreceptor cells. Unfortunately, progress in understanding the magnetic sense has been challenged by: (i) the availability of a relatively small number of techniques for analysing behavioural responses to magnetic fields by animals; (ii) difficulty in achieving reproducible results using the techniques; and (iii) difficulty in development and implementation of new techniques that might bring greater experimental power. As a consequence, laboratory and field techniques used to study the magnetic sense today remain substantially unchanged, despite the huge developments in technology and instrumentation since the techniques were developed in the 1950s. New methods developed for behavioural study of the magnetic sense over the last 30 years include the use of laboratory conditioning techniques and tracking devices based on transmission of radio signals to and from satellites. Here we consider methodological developments in the study of the magnetic sense and present suggestions for increasing the reproducibility and ease of interpretation of experimental studies. We recommend that future experiments invest more effort in automating control of experiments and data capture, control of stimulation and full blinding of experiments in the rare cases where automation is impossible. We also propose new experiments to confirm whether or not animals can detect magnetic fields using the radical-pair effect together with an alternate hypothesis that may explain the dependence on light of responses by animals to magnetic field stimuli

    The effects of a counter-current interstitial flow on a discharging hourglass

    Get PDF
    This work experimentally investigates the effects of an interstitial fluid on the discharge of granular material within an hourglass. The experiments include observations of the flow patterns, measurements of the discharge rates, and pressure variations for a range of different fluid viscosities, particle densities and diameters, and hourglass geometries. The results are classified into three regimes: (i) granular flows with negligible interstitial fluid effects; (ii) flows affected by the presence of the interstitial fluid; and (iii) a no-flow region in which particles arch across the orifice and do not discharge. Within the fluid-affected region, the flows were visually classified as lubricated and air-coupled flows, oscillatory flows, channeling flows in which the flow preferentially rises along the sidewalls, and fluidized flows in which the upward flow suspends the particles. The discharge rates depends on the Archimedes number, the ratio of the effective hopper diameter to the particle diameter, and hourglass geometry. The hopper-discharge experiments, as well as experiments found in the literature, demonstrate that the presence of the interstitial fluid is important when the nondimensional ratio (N) of the single-particle terminal velocity to the hopper discharge velocity is less than 10. Flow ceased in all experiments in which the particle diameter was greater than 25% of the effective hopper diameter regardless of the interstitial fluid

    Animal-Related Injuries in a Resource-Limited Setting: Experiences from a Tertiary Health Institution in Northwestern Tanzania.

    Get PDF
    Animal related injuries are a major but neglected emerging public health problem and contribute significantly to high morbidity and mortality worldwide. No prospective studies have been done on animal related injuries in our setting. This study was conducted to determine the management patterns and outcome of animal related injuries and their social impact on public health policy in the region. This was a descriptive prospective study of animal related injury patients that presented to Bugando Medical Centre between September 2007 and August 2011. Statistical data analysis was done using SPSS computer software version 17.0. A total of 452 (8.3%) animal-related injury patients were studied. The modal age group was 21-30 years. The male to female ratio was 2.1:1. Dog-bites (61.1%) were the most common injuries. Musculoskeletal (71.7%) region was the most frequent body region injured. Soft tissue injuries (92.5%) and fractures (49.1%) were the most common type of injuries sustained. Only 140 (31.0%) patients were hospitalized and most of them (97.1%) were treated surgically. Wound debridement was the most common procedure performed in 91.2% of patients. Postoperative complication rate was 15.9%, the commonest being surgical site infections (SSI) in 55.1% of patients. SSI was significantly associated with late presentation and open fractures (P < 0.001). The overall median duration of hospitalization was 16 days. Patients who had severe injuries, long bone fractures and those with hemiplegia stayed longer in the hospital (P < 0.001). Mortality rate was 10.2% and was significantly high in patients with severe injuries, severe head injury, tetanus and admission SBP < 90 mmHg (P < 0.001). The follow up of patients was poor. Animal related injuries constitute a major public health problem in our setting and commonly affect the young adult male in their economically productive age-group. Measures towards prevention and proper treatment and follow up are important in order to reduce morbidity and mortality resulting from this form of trauma
    corecore