80,303 research outputs found
A preliminary shield design for a SNAP-8 power system
A preliminary shield design for a nuclear power system utilizing a SNAP-8 reactor for space base application is presented. A representative space base configuration was selected to set the geometry constraints imposed on the design. The base utilizes two independent power packages each with a reactor operating at 600 kwt and each producing about 50 kwe. The crew compartment is located about 200 feet from each reactor and is large enough in extent to intercept a total shadow angle of 60 deg measured about the center line of each reactor
Determination of U, V, and W from single station Doppler radar radial velocities
The ST/MST (stratosphere troposphere/mesosphere stratosphere troposphere) clear air Doppler radar, or wind profiler, is an important tool in observational meteorology because of its capability to remote observe dynamic parameters of the atmosphere. There are difficulties in transforming the observed radial velocities into meteorological wind components. How this problem has been treated in the past is reviewed, and some of the analysis is recast to a form more suited to the high diagnostic abilities of a number of fixed beam configurations with reference to a linear wind field. The results, in conjunction with other works which treats problems such as the effects of finite sample volumes in the presence of nonhomogeneous atmospheric reflectivity, have implications important to the design of both individual MST/ST radars and MST/ST radar networks. The key parameters to uncoupling terms in the scaling equations are w sub x and w sub y. Whenever the stratiform condition, which states that these two parameters are negligible, is satisfied, a five beam ST radar may determine unbiased values of u, v, and w for sample volumes directly above the radar. The divergence and partial deformation of the flow may also be determined. Three beam systems can determine w and w sub z, but are unable to obtain u and v wind components uncontaminated by vertical sheer terms, even when the stratiform condition is satisfied
Space and exclusion: does urban morphology play a part in social deprivation?
There is currently a growing interest in the spatial causes of poverty, particularly its persistence. This paper presents methodological innovations that have been developed for investigating the relationship between physical segregation and economic marginalization in the urban environment. Using GIS to layer historical poverty data, contemporary deprivation indexes and space syntax measures of spatial segregation, a multivariate system has been created to enable the understanding of the spatial process involved in the creation and stagnation of poverty areas as well as to analyse the street segment scale of configuration
Recent results at the Sunset radar
The Sunset radar is a VHF, pulsed Doppler radar located in a narrow canyon near the Sunset townsite 15 km west of Boulder, CO. This facility is operated by the Aeronomy Laboratory, ERL, NOAA, exclusively for meteorological research and the development of the mesosphere-stratosphere-troposphere (MST) and stratosphere-troposphere (ST) radar technique. Recent results include a measurement of all three components of wind velocity for the Federal Administration
Advanced dosimetry systems for the space transport and space station
Advanced dosimetry system concepts are described that will provide automated and instantaneous measurement of dose and particle spectra. Systems are proposed for measuring dose rate from cosmic radiation background to greater than 3600 rads/hr. Charged particle spectrometers, both internal and external to the spacecraft, are described for determining mixed field energy spectra and particle fluxes for both real time onboard and ground-based computer evaluation of the radiation hazard. Automated passive dosimetry systems consisting of thermoluminescent dosimeters and activation techniques are proposed for recording the dose levels for twelve or more crew members. This system will allow automatic onboard readout and data storage of the accumulated dose and can be transmitted to ground after readout or data records recovered with each crew rotation
Generation of twin Fock states via transition from a two-component Mott insulator to a superfluid
We propose the dynamical creation of twin Fock states, which exhibit
Heisenberg limited interferometric phase sensitivities, in an optical lattice.
In our scheme a two-component Mott insulator with two bosonic atoms per lattice
site is melted into a superfluid. This process transforms local correlations
between hyperfine states of atom pairs into multi-particle correlations
extending over the whole system. The melting time does not scale with the
system size which makes our scheme experimentally feasible.Comment: 4 pages, 4 figure
A comparison of vertical velocities measured from specular and nonspecular echoes by a VHF radar
For a number of years, there have been doubts about the accuracy of vertical wind velocities measured with quasi-specular reflections from mesosphere-stratosphere-troposphere (MST) radar. The concern has been that the layers producing the quasi-specular reflection process this hypothetical tilt. Because of the quasi-specular reflection process, this hypothetical tilt would control the effective zenith angle of the radar antenna beam so that a small component of the horizontal velocity would be included in what was assumed to be a truly vertical beam. The purpose here is to test the hypothesis that there is an effect on the wind velocities measured on a vertical antenna beam due to a long-term tilting of the stable atmospheric layers that cause quasi-specular reflection. Gravity waves have been observed to cause short-term tilting of turbulent layers and specularly reflecting layers. In both cases, the effect was a wave-like deformation atmospheric layers with a period of a few minutes. This geometry is shown. Because of this influence of gravity waves, it was expected that there would be short-term variations in the vertical velocity
An Evidence Based Time-Frequency Search Method for Gravitational Waves from Pulsar Glitches
We review and expand on a Bayesian model selection technique for the
detection of gravitational waves from neutron star ring-downs associated with
pulsar glitches. The algorithm works with power spectral densities constructed
from overlapping time segments of gravitational wave data. Consequently, the
original approach was at risk of falsely identifying multiple signals where
only one signal was present in the data. We introduce an extension to the
algorithm which uses posterior information on the frequency content of detected
signals to cluster events together. The requirement that we have just one
detection per signal is now met with the additional bonus that the belief in
the presence of a signal is boosted by incorporating information from adjacent
time segments.Comment: 6 pages, 4 figures, submitted to AMALDI 7 proceeding
The stochastic dynamics of micron and nanoscale elastic cantilevers in fluid: fluctuations from dissipation
The stochastic dynamics of micron and nanoscale cantilevers immersed in a
viscous fluid are quantified. Analytical results are presented for long slender
cantilevers driven by Brownian noise. The spectral density of the noise force
is not assumed to be white and the frequency dependence is determined from the
fluctuation-dissipation theorem. The analytical results are shown to be useful
for the micron scale cantilevers that are commonly used in atomic force
microscopy. A general thermodynamic approach is developed that is valid for
cantilevers of arbitrary geometry as well as for arrays of multiple cantilevers
whose stochastic motion is coupled through the fluid. It is shown that the
fluctuation-dissipation theorem permits the calculation of stochastic
quantities via straightforward deterministic methods. The thermodynamic
approach is used with deterministic finite element numerical simulations to
quantify the autocorrelation and noise spectrum of cantilever fluctuations for
a single micron scale cantilever and the cross-correlations and noise spectra
of fluctuations for an array of two experimentally motivated nanoscale
cantilevers as a function of cantilever separation. The results are used to
quantify the noise reduction possible using correlated measurements with two
closely spaced nanoscale cantilevers.Comment: Submitted to Nanotechnology April 26, 200
- …