24,867 research outputs found

    An efficient routine for infrared radiative transfer in a cloudy atmosphere

    Get PDF
    A FORTRAN program that calculates the atmospheric cooling rate and infrared fluxes for partly cloudy atmospheres is documented. The IR fluxes in the water bands and the 9.6 and 15 micron bands are calculated at 15 levels ranging from 1.39 mb to the surface. The program is generalized to accept any arbitrary atmospheric temperature and humidity profiles and clouds as input and return the cooling rate and fluxes as output. Sample calculations for various atmospheric profiles and cloud situations are demonstrated

    Economics of polysilicon processes

    Get PDF
    Techniques are being developed to provide lower cost polysilicon material for solar cells. Existing technology which normally provides semiconductor industry polysilicon material is undergoing changes and also being used to provide polysilicon material for solar cells. Economics of new and existing technologies are presented for producing polysilicon. The economics are primarily based on the preliminary process design of a plant producing 1,000 metric tons/year of silicon. The polysilicon processes include: Siemen's process (hydrogen reduction of trichlorosilane); Union Carbide process (silane decomposition); and Hemlock Semiconductor process (hydrogen reduction of dichlorosilane). The economics include cost estimates of capital investment and product cost to produce polysilicon via the technology. Sensitivity analysis results are also presented to disclose the effect of major paramentes such as utilities, labor, raw materials and capital investment

    Improving clerkship preparedness: a hospital medicine elective for pre-clerkship students.

    Get PDF
    BackgroundMedical students often struggle to apply their nascent clinical skills in clerkships. While transitional clerkships can orient students to new roles and logistics, students may benefit from developing clinical skills in inpatient environments earlier in their curriculum to improve readiness for clerkships.InterventionOur four- to six-session elective provides pre-clerkship students with individualized learning in the inpatient setting with the aim of improving clerkship preparedness. Students work one-on-one with faculty who facilitate individualized learning through mentoring, deliberate practice, and directed feedback. Second-year medical students are placed on an attending-only, traditionally 'non-teaching' service in the hospital medicine division of a Veterans Affairs (VA) hospital for half-day sessions. Most students self-select into the elective following a class-wide advertisement. The elective also accepts students who are referred for remediation of their clinical skills.OutcomeIn the elective's first two years, 25 students participated and 47 students were waitlisted. We compared participant and waitlisted (non-participant) students' self-efficacy in several clinical and professional domains during their first clerkship. Elective participants reported significantly higher clerkship preparedness compared to non-participants in the areas of physical exam, oral presentation, and formulation of assessments and plans.ConclusionsStudents found the one-on-one feedback and personalized attention from attending physicians to be a particularly useful aspect of the course. This frequently cited benefit points to students' perceived needs and the value they place on individualized feedback. Our innovation harnesses an untapped resource - the hospital medicine 'non-teaching' service - and serves as an attainable option for schools interested in enhancing early clinical skill-building for all students, including those recommended for remediation.AbbreviationsA&P: Assessment and plan; H&P: History and physical; ILP: Individual learning plan

    Stochastic self-assembly of incommensurate clusters

    Full text link
    We examine the classic problem of homogeneous nucleation and growth by deriving and analyzing a fully discrete stochastic master equation. Upon comparison with results obtained from the corresponding mean-field Becker-D\"{o}ring equations we find striking differences between the two corresponding equilibrium mean cluster concentrations. These discrepancies depend primarily on the divisibility of the total available mass by the maximum allowed cluster size, and the remainder. When such mass incommensurability arises, a single remainder particle can "emulsify" or "disperse" the system by significantly broadening the mean cluster size distribution. This finite-sized broadening effect is periodic in the total mass of the system and can arise even when the system size is asymptotically large, provided the ratio of the total mass to the maximum cluster size is finite. For such finite ratios we show that homogeneous nucleation in the limit of large, closed systems is not accurately described by classical mean-field mass-action approaches.Comment: 5 pages, 4 figures, 1 tabl

    Minimum-error discrimination between symmetric mixed quantum states

    Full text link
    We provide a solution of finding optimal measurement strategy for distinguishing between symmetric mixed quantum states. It is assumed that the matrix elements of at least one of the symmetric quantum states are all real and nonnegative in the basis of the eigenstates of the symmetry operator.Comment: 10 page

    Dissolved inorganic carbon cycle in the maximum turbidity zone of the upper Scheldt estuary

    Get PDF
    The Scheldt Estuary is one of the most polluted macro-tidal European estuaries due to a high anthropogenic pressure around its catchment area. High load of suspended organic matter (with at least two third directly related to human activities) associated to a long residence time within the estuary (three months) contribute to an intense bacterial degradation (Wollast, 1988). The most striking feature of this work, compared to the previous studies carried on the Scheldt (Frankignoulle et al.,1996, 1998; Abril et al., 2000) is the continuous measurement of the CO2 partial pressure of the surface brackish water in the maximum turbidity zone of the inner Scheldt Estuary since November 2002 to nowadays. Our results show that pCO2 in the surface brackish water is outstandingly high, ranging from 2000 to 10000 ppm, which represents up to 2700% of the CO2 atmospheric pressure. CO2 also shows strong meso- and macroscale variabilities and on an annual scale it appears that pCO2 is mainly controlled by temperature and heterotrophy

    EXITE2 Observation of the SIGMA Source GRS 1227+025

    Full text link
    We report the EXITE2 hard X-ray imaging of the sky around 3C273. A 2h observation on May 8, 1997, shows a ∼\sim260 mCrab source detected at ∼4σ\sim4\sigma in each of two bands (50-70 and 70-93 keV) and located ∼\sim30' from 3C273 and consistent in position with the SIGMA source GRS1227+025. The EXITE2 spectrum is consistent with a power law with photon index 3 and large low energy absorption, as indicated by the GRANAT/SIGMA results. No source was detected in more sensitive followup EXITE2 observations in 2000 and 2001 with 3σ\sigma upper limits of 190 and 65 mCrab, respectively. Comparison with the flux detected by SIGMA shows the source to be highly variable, suggesting it may be non-thermal and beamed and thus the first example of a ``type 2'' (absorbed) Blazar. Alternatively it might be (an unprecedented) very highly absorbed binary system undergoing accretion disk instability outbursts, possibly either a magnetic CV, or a black hole X-ray nova.Comment: 12 pages, 4 figures, accepted for publication in Ap

    Quantum teleportation between moving detectors in a quantum field

    Full text link
    We consider the quantum teleportation of continuous variables modeled by Unruh-DeWitt detectors coupled to a common quantum field initially in the Minkowski vacuum. An unknown coherent state of an Unruh-DeWitt detector is teleported from one inertial agent (Alice) to an almost uniformly accelerated agent (Rob, for relativistic motion), using a detector pair initially entangled and shared by these two agents. The averaged physical fidelity of quantum teleportation, which is independent of the observer's frame, always drops below the best fidelity value from classical teleportation before the detector pair becomes disentangled with the measure of entanglement evaluated around the future lightcone of the joint measurement event by Alice. The distortion of the quantum state of the entangled detector pair from the initial state can suppress the fidelity significantly even when the detectors are still strongly entangled around the lightcone. We point out that the dynamics of entanglement of the detector pair observed in Minkowski frame or in quasi-Rindler frame are not directly related to the physical fidelity of quantum teleportation in our setup. These results are useful as a guide to making judicious choices of states and parameter ranges and estimation of the efficiency of quantum teleportation in relativistic quantum systems under environmental influences.Comment: 18 pages, 7 figure

    Interaction of Phonons and Dirac Fermions on the Surface of Bi2Se3: A Strong Kohn Anomaly

    Full text link
    We report the first measurements of phonon dispersion curves on the (001) surface of the strong three-dimensional topological insulator Bi2Se3. The surface phonon measurements were carried out with the aid of coherent helium beam surface scattering techniques. The results reveal a prominent signature of the exotic metallic Dirac fermion quasi-particles, including a strong Kohn anomaly. The signature is manifest in a low energy isotropic convex dispersive surface phonon branch with a frequency maximum of 1.8 THz, and having a V-shaped minimum at approximately 2kF that defines the Kohn anomaly. Theoretical analysis attributes this dispersive profile to the renormalization of the surface phonon excitations by the surface Dirac fermions. The contribution of the Dirac fermions to this renormalization is derived in terms of a Coulomb-type perturbation model
    • …
    corecore