3,957 research outputs found
Semântica para Pejorativos: Contra-argumentos à Inocência Semântica
The pejorative have been the object of a growing literature in philosophy. Hom and May (2013) defend the Semantic Innocence thesis to explain a depreciative force of the pejoratives, receiving attacks from Sennet and Copp (2014). The purpose of this article is to present contributions to this discussion, defending the Semantic Innocence thesis of the attacks received from Sennet and Copp (2014), but presenting a new argument against its pretensions, showing that the Semantic Innocence thesis fails to recognize the derogatory character of insults whose neutral counterpart is false
Wall turbulence control
A variety of wall turbulence control devices which were experimentally investigated are discussed; these include devices for burst control, alteration of outer flow structures, large eddy substitution, increased heat transfer efficiency, and reduction of wall pressure fluctuations. Control of pre-burst flow was demonstrated with a single, traveling surface depression which is phase-locked to elements of the burst production process. Another approach to wall turbulence control is to interfere with the outer layer coherent structures. A device in the outer part of a boundary layer was shown to suppress turbulence and reduce drag by opposing both the mean and unsteady vorticity in the boundary layer. Large eddy substitution is a method in which streamline curvature is introduced into the boundary layer in the form of streamwise vortices. Riblets, which were already shown to reduce turbulent drag, were also shown to exhibit superior heat transfer characteristics. Heat transfer efficiency as measured by the Reynolds Analogy Factor was shown to be as much as 36 percent greater than a smooth flat plate in a turbulent boundary layer. Large Eddy Break-Up (LEBU) which are also known to reduce turbulent drag were shown to reduce turbulent wall pressure fluctuation
Anti-apoptotic signaling by the interleukin-2 receptor reveals a function for cytoplasmic tyrosine residues within the common gamma (gamma c) receptor subunit
The interleukin-2 receptor (IL-2R) is composed of one affinity-modulating subunit (IL-2Ralpha) and two essential signaling subunits (IL-2Rbeta and gammac). Although most known signaling events are mediated through tyrosine residues located within IL-2Rbeta, no functions have yet been ascribed to gammac tyrosine residues. In this study, we describe a role for gammac tyrosines in anti-apoptotic signal transduction. We have shown previously that a tyrosine-deficient IL-2Rbeta chain paired with wild type gammac stimulated enhancement of bcl-2 mRNA in IL-2-dependent T cells, but it was not determined which region of the IL-2R or which pathway was activated to direct this signaling response. Here we show that up-regulation of Bcl-2 by an IL-2R lacking IL-2Rbeta tyrosine residues leads to increased cell survival after cytokine deprivation; strikingly, this survival signal does not occur in the absence of gammac tyrosine residues. These gammac-dependent signals are revealed only in the absence of IL-2Rbeta tyrosines, indicating that the IL-2R engages at least two distinct signaling pathways to regulate apoptosis and Bcl-2 expression. Mechanistically, the gammac-dependent signal requires activation of Janus kinases 1 and 3 and is sensitive to wortmannin, implicating phosphatidylinositol 3-kinase. Consistent with involvement of phosphatidylinositol 3-kinase, Akt can be activated via tyrosine residues on gammac. Thus, gammac mediates an anti-apoptotic signaling pathway through Akt which cooperates with signals from its partner chain, IL-2Rbeta
Freezing transition of the vortex liquid in anisotropic superconductors
We study the solid-liquid transition of a model of pancake vortices in
laminar superconductors using a density functional theory of freezing. The
physical properties of the system along the melting line are discussed in
detail. We show that there is a very good agreement with experimental data in
the shape and position of the first order transition in the phase diagram and
in the magnitude and temperature dependence of the magnetic induction jump at
the transition. We analyze the validity of the Lindemann melting criterion and
the Hansen-Verlet freezing criterion. Both criteria are shown to be good to
predict the phase diagram in the region where a first order phase transition is
experimentally observed.Comment: 9 pages, 10 figure
Fluctuations and phase transitions in Larkin-Ovchinnikov liquid crystal states of population-imbalanced resonant Fermi gas
Motivated by a realization of imbalanced Feshbach-resonant atomic Fermi
gases, we formulate a low-energy theory of the Fulde-Ferrell and the
Larkin-Ovchinnikov (LO) states and use it to analyze fluctuations, stability,
and phase transitions in these enigmatic finite momentum-paired superfluids.
Focusing on the unidirectional LO pair-density wave state, that spontaneously
breaks the continuous rotational and translational symmetries, we show that it
is characterized by two Goldstone modes, corresponding to a superfluid phase
and a smectic phonon. Because of the liquid-crystalline "softness" of the
latter, at finite temperature the 3d state is characterized by a vanishing LO
order parameter, quasi-Bragg peaks in the structure and momentum distribution
functions, and a "charge"-4, paired Cooper-pairs, off-diagonal-long-range
order, with a superfluid-stiffness anisotropy that diverges near a transition
into a nonsuperfluid state. In addition to conventional integer vortices and
dislocations the LO superfluid smectic exhibits composite half-integer
vortex-dislocation defects. A proliferation of defects leads to a rich variety
of descendant states, such as the "charge"-4 superfluid and Fermi-liquid
nematics and topologically ordered nonsuperfluid states, that generically
intervene between the LO state and the conventional superfluid and the
polarized Fermi-liquid at low and high imbalance, respectively. The fermionic
sector of the LO gapless superconductor is also quite unique, exhibiting a
Fermi surface of Bogoliubov quasiparticles associated with the Andreev band of
states, localized on the array of the LO domain-walls.Comment: 56 pages, 21 figure
Analysis of Dislocation Mechanism for Melting of Elements: Pressure Dependence
In the framework of melting as a dislocation-mediated phase transition we
derive an equation for the pressure dependence of the melting temperatures of
the elements valid up to pressures of order their ambient bulk moduli. Melting
curves are calculated for Al, Mg, Ni, Pb, the iron group (Fe, Ru, Os), the
chromium group (Cr, Mo, W), the copper group (Cu, Ag, Au), noble gases (Ne, Ar,
Kr, Xe, Rn), and six actinides (Am, Cm, Np, Pa, Th, U). These calculated
melting curves are in good agreement with existing data. We also discuss the
apparent equivalence of our melting relation and the Lindemann criterion, and
the lack of the rigorous proof of their equivalence. We show that the would-be
mathematical equivalence of both formulas must manifest itself in a new
relation between the Gr\"{u}neisen constant, bulk and shear moduli, and the
pressure derivative of the shear modulus.Comment: 19 pages, LaTeX, 9 eps figure
Analysis of the temperature-dependent quantum point contact conductance in view of the metal-insulator transition in two dimensions
The temperature dependence of the conductance of a quantum point contact has
been measured. The conductance as a function of the Fermi energy shows
temperature-independent fixed points, located at roughly multiple integers of
. Around the first fixed point at e/h, the experimental data for
different temperatures can been scaled onto a single curve. For pure thermal
smearing of the conductance steps, a scaling parameter of one is expected. The
measured scaling parameter, however, is significantly larger than 1. The
deviations are interpreted as a signature of the potential landscape of the
quantum point contact, and of the source-drain bias voltage. We relate our
results phenomenologically to the metal-insulator transition in two dimensions.Comment: 5 pages, 3 figure
Effects of inclusion of spray-dried porcine plasma in lactation diets on sow and litter performance.
Feeding live prey to zoo animals: response of zoo visitors in Switzerland
In summer 2007, with the help of a written questionnaire, the attitudes of more than 400 visitors to the zoological garden of Zurich, Switzerland, toward the idea of feeding live insects to lizards, live fish to otters, and live rabbits to tigers were investigated. The majority of Swiss zoo visitors agreed with the idea of feeding live prey (invertebrates and vertebrates) to zoo animals, both off- and on-exhibit, except in the case of feeding live rabbits to tigers on-exhibit. Women and frequent visitors of the zoo disagreed more often with the on-exhibit feeding of live rabbits to tigers. Study participants with a higher level of education were more likely to agree with the idea of feeding live invertebrates and vertebrates to zoo animals
off-exhibit. In comparison to an earlier study undertaken in Scotland, zoo visitors in Switzerland were more often in favor of the live feeding of vertebrates. Feeding live prey can counter the loss of hunting skills of carnivores and improve the animals’ well-being. However, feeding enrichments have to strike a balance between optimal living conditions of animals and the quality of visitor experience.
Our results show that such a balance can be found, especially when live feeding of mammals is carried out off-exhibit. A good interpretation of food enrichment might help zoos to win more support for the issue, and for re-introduction programs and conservation
Immersed nano-sized Al dispersoids in an Al matrix; effects on the structural and mechanical properties by Molecular Dynamics simulations
We used molecular dynamics simulations based on a potential model in analogy
to the Tight Binding scheme in the Second Moment Approximation to simulate the
effects of aluminum icosahedral grains (dispersoids) on the structure and the
mechanical properties of an aluminum matrix. First we validated our model by
calculating several thermodynamic properties referring to the bulk Al case and
we found good agreement with available experimental and theoretical data.
Afterwards, we simulated Al systems containing Al clusters of various sizes. We
found that the structure of the Al matrix is affected by the presence of the
dispersoids resulting in well ordered domains of different symmetries that were
identified using suitable Voronoi analysis. In addition, we found that the
increase of the grain size has negative effect on the mechanical properties of
the nanocomposite as manifested by the lowering of the calculated bulk moduli.
The obtained results are in line with available experimental data.Comment: 15 pages, 8 figures. Submitted to J. Phys: Condens. Matte
- …
