1,710 research outputs found

    Coherent rotations of a single spin-based qubit in a single quantum dot at fixed Zeeman energy

    Full text link
    Coherent rotations of single spin-based qubits may be accomplished electrically at fixed Zeeman energy with a qubit defined solely within a single electrostatically-defined quantum dot; the gg-factor and the external magnetic field are kept constant. All that is required to be varied are the voltages on metallic gates which effectively change the shape of the elliptic quantum dot. The pseudospin-1/2 qubit is constructed from the two-dimensional S=1/2S=1/2, Sz=1/2S_z=-1/2 subspace of three interacting electrons in a two-dimensional potential well. Rotations are created by altering the direction of the pseudomagnetic field through changes in the shape of the confinement potential. By deriving an exact analytic solution to the long-range Coulomb interaction matrix elements, we calculate explicitly the range of magnitudes and directions the pseudomagnetic field can take. Numerical estimates are given for {GaAs}.Comment: Restructured manuscript, more details shown (results unchanged); Six pages, revtex4; More info at http://soliton.phys.dal.c

    Engineering Cell–ECM–Material Interactions for Musculoskeletal Regeneration

    Get PDF
    The extracellular microenvironment regulates many of the mechanical and biochemical cues that direct musculoskeletal development and are involved in musculoskeletal disease. The extracellular matrix (ECM) is a main component of this microenvironment. Tissue engineered approaches towards regenerating muscle, cartilage, tendon, and bone target the ECM because it supplies critical signals for regenerating musculoskeletal tissues. Engineered ECM–material scaffolds that mimic key mechanical and biochemical components of the ECM are of particular interest in musculoskeletal tissue engineering. Such materials are biocompatible, can be fabricated to have desirable mechanical and biochemical properties, and can be further chemically or genetically modified to support cell differentiation or halt degenerative disease progression. In this review, we survey how engineered approaches using natural and ECM-derived materials and scaffold systems can harness the unique characteristics of the ECM to support musculoskeletal tissue regeneration, with a focus on skeletal muscle, cartilage, tendon, and bone. We summarize the strengths of current approaches and look towards a future of materials and culture systems with engineered and highly tailored cell–ECM–material interactions to drive musculoskeletal tissue restoration. The works highlighted in this review strongly support the continued exploration of ECM and other engineered materials as tools to control cell fate and make large-scale musculoskeletal regeneration a reality

    How many species of fossil arachnids are there?

    Get PDF
    The species-level diversity of fossil Chelicerata is summarized for each order. 1952 valid species of fossil\ud chelicerates are currently recognized, of which 1593 are arachnids. In order of abundance they are: Araneae (979 fossil\ud species), Actinotrichida (283), Eurypterida (241), Scorpiones (111), Xiphosura (96), Trigonotarbida (71), Pseudoscorpiones\ud (38), Phalangiotarbida (30), Opiliones (25), Ricinulei (15), and Anactinotrichida (11). Other groups are represented by ten\ud fossil species or fewer. Based on published descriptions, spiders thus appear to dominate the fossil arachnid species\ud assemblage, making up a greater proportion of paleodiversity than their Recent diversity would predict. Scorpions are also\ud overrepresented, particularly in the Paleozoic, compared to their modern diversity. By contrast, groups like mites,\ud harvestmen, pseudoscorpions and solifuges are noticeably under-represented as fossils when compared to modern patterns\ud of diversity

    Study of resonance light scattering for remote optical probing

    Get PDF
    Enhanced scattering and fluorescence processes in the visible and UV were investigated which will enable improved remote measurements of gas properties. The theoretical relationship between scattering and fluorescence from an isolated molecule in the approach to resonance is examined through analysis of the time dependence of re-emitted light following excitation of pulsed incident light. Quantitative estimates are developed for the relative and absolute intensities of fluorescence and resonance scattering. New results are obtained for depolarization of scattering excited by light at wavelengths within a dissociative continuum. The experimental work was performed in two separate facilities. One of these utilizes argon and krypton lasers, single moded by a tilted etalon, and a 3/4 meter double monochromator. This facility was used to determine properties of the re-emission from NO2, I2 and O3 excited by visible light. The second facility involves a narrow-line dye laser, and a 3/4 meter single monochromator. The dye laser produces pulsed light with 5 nsec pulse duration and 0.005 nm spectral width

    Targeting Policy for Obesity Prevention: Identifying the Critical Age for Weight Gain in Women

    Get PDF
    The obesity epidemic requires the development of prevention policy targeting individuals most likely to benefit. We used self-reported prepregnancy body weight of all women giving birth in Nova Scotia between 1988 and 2006 to define obesity and evaluated socioeconomic, demographic, and temporal trends in obesity using linear regression. There were 172,373 deliveries in this cohort of 110,743 women. Maternal body weight increased significantly by 0.5 kg per year from 1988, and lower income and rural residence were both associated significantly with increasing obesity. We estimated an additional 82,000 overweight or obese women in Nova Scotia in 2010, compared to the number that would be expected from obesity rates of just two decades ago. The critical age for weight gain was identified as being between 20 and 24 years. This age group is an important transition age between adolescence and adulthood when individuals first begin to accept responsibility for food planning, purchasing, and preparation. Policy and public health interventions must target those most at risk, namely, younger women and the socially deprived, whilst tackling the marketing of low-cost energy-dense foods at the expense of healthier options

    Cluster derivation of Parisi's RSB solution for disordered systems

    Full text link
    We propose a general scheme in which disordered systems are allowed to sacrifice energy equi-partitioning and separate into a hierarchy of ergodic sub-systems (clusters) with different characteristic time-scales and temperatures. The details of the break-up follow from the requirement of stationarity of the entropy of the slower cluster, at every level in the hierarchy. We apply our ideas to the Sherrington-Kirkpatrick model, and show how the Parisi solution can be {\it derived} quantitatively from plausible physical principles. Our approach gives new insight into the physics behind Parisi's solution and its relations with other theories, numerical experiments, and short range models.Comment: 7 pages 5 figure
    corecore