648 research outputs found
Dislocation patterns and the similitude principle: 2.5D mesoscale simulations
During plastic flow of crystalline solids, dislocations self-organize in the form of patterns, with a wavelength that is inversely proportional to stress. After four decades of investigations, the origin of this property is still under discussion. We show that dislocation patterns verifying the principle of similitude can be obtained from dynamics simulations of double slip. These patterns are formed in the presence of long- and short-range interactions, but they are not significantly modified when only short-range interactions are present. This new insight into dislocation patterning phenomena has important implications regarding current models
A Framework for Developing Multiyear Conferences on Current Societal Issues
This article describes how Extension professionals and university faculty collaborated on the planning, implementation, and evaluation of a conference to address a key societal issue. Needs assessment and evaluation results are presented as well as an explanation of how results were used in planning future conferences. With limited Extension budgets and personnel, partnering among Extension specialists, university faculty, and experts in relevant topics is a valuable and efficient way to provide the most impact for a community. Developing multiyear conferences to address significant societal issues may be a new way to increase Extension\u27s impact
Missing physics in stick-slip dynamics of a model for peeling of an adhesive tape
It is now known that the equations of motion for the contact point during
peeling of an adhesive tape mounted on a roll introduced earlier are singular
and do not support dynamical jumps across the two stable branches of the peel
force function. By including the kinetic energy of the tape in the Lagrangian,
we derive equations of motion that support stick-slip jumps as a natural
consequence of the inherent dynamics. In the low mass limit, these equations
reproduce solutions obtained using a differential-algebraic algorithm
introduced for the earlier equations. Our analysis also shows that mass of the
ribbon has a strong influence on the nature of the dynamics.Comment: Accepted for publication in Phys. Rev. E (Rapid Communication
Relaxation oscillations and negative strain rate sensitivity in the Portevin - Le Chatelier effect
A characteristic feature of the Portevin - Le Chatelier effect or the jerky
flow is the stick-slip nature of stress-strain curves which is believed to
result from the negative strain rate dependence of the flow stress. The latter
is assumed to result from the competition of a few relevant time scales
controlling the dynamics of jerky flow. We address the issue of time scales and
its connection to the negative strain rate sensitivity of the flow stress
within the framework of a model for the jerky flow which is known to reproduce
several experimentally observed features including the negative strain rate
sensitivity of the flow stress. We attempt to understand the above issues by
analyzing the geometry of the slow manifold underlying the relaxational
oscillations in the model. We show that the nature of the relaxational
oscillations is a result of the atypical bent geometry of the slow manifold.
The analysis of the slow manifold structure helps us to understand the time
scales operating in different regions of the slow manifold. Using this
information we are able to establish connection with the strain rate
sensitivity of the flow stress. The analysis also helps us to provide a proper
dynamical interpretation for the negative branch of the strain rate
sensitivity.Comment: 7 figures, To appear in Phys. Rev.
The hidden order behind jerky flow
Jerky flow, or the Portevin-Le Chatelier effect, is investigated at room temperature by applying statistical, multifractal and dynamical analyses to the unstable plastic flow of polycrystalline Al-Mg alloys with different initial microstructures. It is shown that a chaotic regime is found at medium strain rates, whereas a self-organized critical dynamics is observed at high strain rates. The cross-over between these two regimes is signified by a large spread in the multifractal spectrum. Possible physical mechanisms leading to this wealth of patterning behavior and their dependence on the strain rate and the initial microstructure are discussed
Glucoregulatory Consequences and Cardiorespiratory Parameters in Rats Exposed to Chronic–Intermittent Hypoxia: Effects of the Duration of Exposure and Losartan
Background: Obstructive sleep apnea (OSA) is associated with glucose intolerance. Both chronic sleep disruption and recurrent blood oxygen desaturations (chronic–intermittent hypoxia, CIH) may cause, or exacerbate, metabolic derangements. Methods: To assess the impact of CIH alone, without accompanying upper airway obstructions, on the counter-regulatory response to glucose load and cardiorespiratory parameters, we exposed adult male Sprague-Dawley rats to CIH or sham room air exchanges for 10 h/day for 7, 21, or 35 days and then, 1 day after conclusion of CIH exposure, conducted intravenous glucose-tolerance tests (ivgtt) under urethane anesthesia. Additional rats underwent 35 days of CIH followed by 35 days of regular housing, or had 35 day-long CIH exposure combined with daily administration of the type 1 angiotensin II receptor antagonist, losartan (15 mg/kg, p.o.), and then were also subjected to ivgtt. Results: Compared with the corresponding control groups, CIH rats had progressively reduced glucose-stimulated insulin release and impaired glucose clearance, only mildly elevated heart rate and/or arterial blood pressure and slightly reduced respiratory rate. The differences in insulin release between the CIH and sham-treated rats disappeared in the rats normally housed for 35 days after 35 days of CIH/sham exposure. The losartan-treated rats had improved insulin sensitivity, with no evidence of suppressed insulin release in the CIH group. Conclusion: In adult rats, the glucose-stimulated insulin release is gradually suppressed with the duration of exposure to CIH, but the effect is reversible. Elimination of the detrimental effect of CIH on insulin release by losartan suggests that CIH disrupts glucoregulation through angiotensin/catecholaminergic pathways. Accordingly, treatment with continuous positive airway pressure may ameliorate pre-diabetic conditions in OSA patients, in part, by reducing sympathoexcitatory effects of recurrent nocturnal hypoxia
Modelización de las inestabilidades en la deformación plástica de monocristales de circona estabilizada con itria (YCSZ)
En este trabajo se presenta un modelo para explicar las inestabilidades dinámicas observadas durante la deformación
plástica a alta temperatura de monocristales de circona estabilizada con itria, (YCSZ, yttria cubic stabilized zirconia) con
alto contenido en itria. El modelo se basa en el fenómeno Portevin-Le Chatelier (PLC), que consiste en episodios sucesivos
de anclaje y desanclaje de dislocaciones cuando éstas se mueven con una velocidad del mismo orden que los defectos
que obstaculizan su movimiento. La evaluación numérica de los parámetros implicados en el modelo muestra que las
inestabilidades plásticas son totalmente compatibles con el efecto Portevin- Le Chatelie
PVDF/BaTiO3 composite foams with high content of β phase by thermally induced phase separation (TIPS)
Poly(vinylidene fluoride) (PVDF) displays ferroelectric, piezoelectric and pyroelectric behavior and it is widely used in high-tech applications including sensors, transducers, energy harvesting devices and actuators. The crystallization of this polymer into highly polar β phase is desirable but is hard to achieve without applying specific thermo-mechanical treatments. Indeed, fabrication processes directly affect PVDF molecular chain conformation, inducing distinct polymorphs. In this paper, we present the fabrication of PVDF/BaTiO3 composite foams by thermally induced phase separation method (TIPS). Different compositions are tested and characterized. The crystallinity, and in particular the development of electroactive β crystal phase is monitored by FTIR, DSC and XRD measurements. Dielectric properties are also evaluated. It turns out that TIPS is a straightforward method that clearly promotes the spontaneous growth of the β phase in PVDF and its composite foams, without the need to apply additional treatments, and also significantly improves the degree of crystallinity. BaTiO3 content gives additional value to the development of β phase and total crystallinity of the systems. The low permittivity values (between 2 and 3), combined with the cellular morphology makes these materials suitable as lightweight components of microelectronic circuits
- …