426 research outputs found

    Li, B and Be Contents of Harzburgites from the Dramala Complex (Pindos Ophiolite, Greece): Evidence for a MOR-type Mantle in a Supra-subduction Zone Environment

    Get PDF
    The Pindos ophiolite represents oceanic lithosphere obducted during the Jurassic. The Dramala mantle section mainly consists of highly depleted spinel harzburgite and minor plagioclase-bearing harzburgite. Textural observations and major element compositions of minerals indicate that the harzburgites experienced impregnation by a mafic, depleted melt and subsequent high-temperature (high-T) hydration and cooling (>750°C) forming pargasite and edenitic hornblende. During further cooling (from ≥ 350-400°C to < 100°C), talc + tremolite ± serpentine ± olivine, serpentine + magnetite, and finally plagioclase alteration phases formed. To test the hypothesis of a supra-subduction zone origin for the Dramala mantle, we measured Li, B and Be contents of minerals by secondary ion mass spectrometry. Whole-rock contents were measured using inductively coupled plasma-mass spectrometry and prompt gamma neutron activation analysis. We observe low Li and B contents of primary minerals (olivine, orthopyroxene, clinopyroxene) consistent with values for unmetasomatized mantle minerals; only Li contents of clinopyroxene (up to 3·7 μg/g) are slightly elevated. The bulk Li contents (0·5-1·1 μg/g) are in the upper range of values for unmetasomatized mantle, whereas B contents (<0·04-1·1 μg/g) are variable and slightly elevated compared with the unmetasomatized mantle as a result of serpentinization. Beryllium abundances in all minerals are very low (<0·005 μg/g), except for pargasite, where a maximum Be content of 0·012 μg/g was measured. The selective addition of Li to clinopyroxene can be related to the interaction with a depleted melt, and/or to partitioning of Li into clinopyroxene upon cooling. During high-T hydration and cooling, the fluid calculated to be in equilibrium with the pargasite or edenitic hornblende (based on Li, Be and B) could have been reaction-modified seawater. Low-T hydration may have led to a very minor increase in bulk B content of most samples and to the formation of serpentine with highly variable B contents (0·1-28 μg/g). Low-T hydration decreased the Li content of orthopyroxene, and Li was probably leached from some samples. The lack of correlation between degree of serpentinization and bulk B contents as well as the presence of high- and low-B serpentine can be explained by low fluid-rock ratios, decreasing T during serpentinization and lack of equilibrium as a result of fast obduction-exhumation. The low light-element contents of primary minerals and whole-rock samples clearly argue against a supra-subduction zone (SSZ) origin of the Dramala mantle section, and against the previous hypothesis of hydrous melting of the Pindos mantle above a subduction zone. We therefore conclude that the Dramala harzburgites represent a mid-ocean ridge (MOR)-type mantle, and not an SSZ-type mantle, juxtaposed with MOR-type and SSZ-type oceanic crust, either in a back-arc or in an intra-oceanic subduction zone settin

    Similarity and contrasts between thermodynamic properties at the critical point of liquid alkali metals and of electron-hole droplets

    Full text link
    The recent experimental study by means of time-resolved luminescence measurements of an electron-hole liquid (EHL) in diamond by Shimano et al. [Phys. Rev. Lett. 88 (2002) 057404] prompts us to compare and contrast critical temperature T_c and critical density n_c relations in liquid alkali metals with those in electron-hole liquids. The conclusion drawn is that these systems have similarities with regard to critical properties. In both cases the critical temperature is related to the cube root of the critical density. The existence of this relation is traced to Coulomb interactions and to systematic trends in the dielectric constant of the electron-hole systems. Finally a brief comparison between the alkalis and EHLs of the critical values for the compressibility ratio Z_c is also given

    Optical spin pumping of modulation doped electrons probed by a two-color Kerr rotation technique

    Full text link
    We report on optical spin pumping of modulation electrons in CdTe-based quantum wells with low intrinsic electron density (by 10^10 cm^{-2}). Under continuous wave excitation, we reach a steady state accumulated spin density of about 10^8 cm^{-2}. Using a two-color Hanle-MOKE technique, we find a spin relaxation time of 34 ns for the localized electrons in the nearly unperturbed electron gas. Independent variation of the pump and probe energies demonstrates the presence of additional non-localized electrons in the quantum well, whose spin relaxation time is substantially shorter

    Observation of Chirality‐Induced Roton‐Like Dispersion in a 3D Micropolar Elastic Metamaterial

    Get PDF
    A theoretical paper based on chiral micropolar effective-medium theory suggested the possibility of unusual roton-like acoustical-phonon dispersion relations in 3D elastic materials. Here, as a first novelty, the corresponding inverse problem is solved, that is, a specific 3D chiral elastic metamaterial structure is designed, the behavior of which follows this effective-medium description. The metamaterial structure is based on a simple-cubic lattice of cubes, each of which not only has three translational but also three rotational degrees of freedom. The additional rotational degrees of freedom are crucial within micropolar elasticity. The cubes and their degrees of freedom are coupled by a chiral network of slender rods. As a second novelty, this complex metamaterial is manufactured in polymer form by 3D laser printing and its behavior is characterized experimentally by phonon-band-structure measurements. The results of these measurements, microstructure finite-element calculations, and solutions of micropolar effective-medium theory are in good agreement. The roton-like dispersion behavior of the lowest phonon branch results from two aspects. First, chirality splits the transverse acoustical branches as well as the transverse optical branches. Second, chirality leads to an ultrastrong coupling and hybridization of chiral acoustical and optical phonons at finite wavevectors

    Optical properties of Si/Si0.87Ge0.13 multiple quantum well wires

    Get PDF
    Nanometer-scale wires cut into a Si/Si0.87Ge0.13 multiple quantum well structure were fabricated and characterized by using photoluminescence and photoreflectance at temperatures between 4 and 20 K. It was found that, in addition to a low-energy broadband emission at around 0.8 eV and other features normally observable in photoluminescence measurements, fabrication process induced strain relaxation and enhanced electron-hole droplets emission together with a new feature at 1.131 eV at 4 K were observed. The latter was further identified as a transition related to impurities located at the Si/Si0.87Ge0.13 heterointerfaces

    Band gap renormalization in photoexcited semiconductor quantum wire structures in the GW approximation

    Full text link
    We investigate the dynamical self-energy corrections of the electron-hole plasma due to electron-electron and electron-phonon interactions at the band edges of a quasi-one dimensional (1D) photoexcited electron-hole plasma. The leading-order GWGW dynamical screening approximation is used in the calculation by treating electron-electron Coulomb interaction and electron-optical phonon Fr\"{o}hlich interaction on an equal footing. We calculate the exchange-correlation induced band gap renormalization (BGR) as a function of the electron-hole plasma density and the quantum wire width. The calculated BGR shows good agreement with existing experimental results, and the BGR normalized by the effective quasi-1D excitonic Rydberg exhibits an approximate one-parameter universality.Comment: 11 pages, 3 figure

    Effect of quantum confinement on exciton-phonon interactions

    Get PDF
    We investigate the homogeneous linewidth of localized type-I excitons in type-II GaAs/AlAs superlattices. These localizing centers represent the intermediate case between quasi-two-dimensional (Q2D) and quasi-zero-dimensional localizations. The temperature dependence of the homogeneous linewidth is obtained with high precision from micro-photoluminescence spectra. We confirm the reduced interaction of the excitons with their environment with decreasing dimensionality except for the coupling to LO-phonons. The low-temperature limit for the linewidth of these localized excitons is five times smaller than that of Q2D excitons. The coefficient of exciton-acoustic-phonon interaction is 5 ~ 6 times smaller than that of Q2D excitons. An enhancement of the average exciton-LO-phonon interaction by localization is found in our sample. But this interaction is very sensitive to the detailed structure of the localizing centers.Comment: 6 pages, 4 figure

    Spatio-temporal dynamics of quantum-well excitons

    Get PDF
    We investigate the lateral transport of excitons in ZnSe quantum wells by using time-resolved micro-photoluminescence enhanced by the introduction of a solid immersion lens. The spatial and temporal resolutions are 200 nm and 5 ps, respectively. Strong deviation from classical diffusion is observed up to 400 ps. This feature is attributed to the hot-exciton effects, consistent with previous experiments under cw excitation. The coupled transport-relaxation process of hot excitons is modelled by Monte Carlo simulation. We prove that two basic assumptions typically accepted in photoluminescence investigations on excitonic transport, namely (i) the classical diffusion model as well as (ii) the equivalence between the temporal and spatial evolution of the exciton population and of the measured photoluminescence, are not valid for low-temperature experiments.Comment: 8 pages, 6 figure

    Direct observation of free-exciton thermalization in quantum-well structures

    Get PDF
    We report on a direct observation of free-exciton thermalization in quantum-well structures. A narrow energy distribution of free 1s excitons is created in ZnSe-based quantum wells by emission of one LO phonon after optical excitation of the continuum states with picosecond laser pulses. The subsequent relaxation dynamics within the 1s-exciton dispersion is directly monitored by time-resolved studies of the phonon-assisted photoluminescence. It is demonstrated that the free-exciton distribution remains nonthermal for some 100 ps. The observed dynamics is in reasonable agreement with numerical results of a rate-equation model which accounts for the relevant exciton-phonon coupling mechanisms
    corecore