54 research outputs found

    Expansion dynamics in the one-dimensional Fermi-Hubbard model

    Full text link
    Expansion dynamics of interacting fermions in a lattice are simulated within the one-dimensional (1D) Hubbard model, using the essentially exact time-evolving block decimation (TEBD) method. In particular, the expansion of an initial band-insulator state is considered. We analyze the simulation results based on the dynamics of a two-site two-particle system, the so-called Hubbard dimer. Our findings describe essential features of a recent experiment on the expansion of a Fermi gas in a two-dimensional lattice. We show that the Hubbard-dimer dynamics, combined with a two-fluid model for the paired and non-paired components of the gas, gives an efficient description of the full dynamics. This should be useful for describing dynamical phenomena of strongly interacting Fermions in a lattice in general.Comment: Fig. 9 changed, text + supplementary material revise

    An mRNA Blueprint for C-4 Photosynthesis Derived from Comparative Transcriptomics of Closely Related C-3 and C-4 Species

    Get PDF
    BrÀutigam A, Kajala K, Wullenweber J, et al. An mRNA Blueprint for C-4 Photosynthesis Derived from Comparative Transcriptomics of Closely Related C-3 and C-4 Species. Plant Physiology. 2011;155(1):142-156.C-4 photosynthesis involves alterations to the biochemistry, cell biology, and development of leaves. Together, these modifications increase the efficiency of photosynthesis, and despite the apparent complexity of the pathway, it has evolved at least 45 times independently within the angiosperms. To provide insight into the extent to which gene expression is altered between C-3 and C-4 leaves, and to identify candidates associated with the C-4 pathway, we used massively parallel mRNA sequencing of closely related C-3 (Cleome spinosa) and C-4 (Cleome gynandra) species. Gene annotation was facilitated by the phylogenetic proximity of Cleome and Arabidopsis (Arabidopsis thaliana). Up to 603 transcripts differ in abundance between these C-3 and C-4 leaves. These include 17 transcription factors, putative transport proteins, as well as genes that in Arabidopsis are implicated in chloroplast movement and expansion, plasmodesmatal connectivity, and cell wall modification. These are all characteristics known to alter in a C-4 leaf but that previously had remained undefined at the molecular level. We also document large shifts in overall transcription profiles for selected functional classes. Our approach defines the extent to which transcript abundance in these C-3 and C-4 leaves differs, provides a blueprint for the NAD-malic enzyme C-4 pathway operating in a dicotyledon, and furthermore identifies potential regulators. We anticipate that comparative transcriptomics of closely related species will provide deep insight into the evolution of other complex traits

    Towards increased shading potential: a combined phenotypic and genetic analysis of rice shoot architecture

    Get PDF
    Rice feeds more than half of the world’s human population. In modern rice farming, a major constraint for productivity is weed proliferation and the ecological impact of herbicide application. Increased weed competitiveness of commercial rice varieties requires enhanced shade casting to limit growth of shade-sensitive weeds and the need for herbicide. We aimed to identify traits that enhance rice shading capacity based on the canopy architecture and the underlying genetic components. We performed a phenotypic screen of a rice diversity panel comprised of 344 varieties, examining 13 canopy architecture traits linked with shading capacity in 4-week-old plants. The analysis revealed a vast range of phenotypic variation across the diversity panel. We used trait correlation and clustering to identify core traits that define shading capacity to be shoot area, number of leaves, culm and solidity (the compactness of the shoot). To simplify the complex canopy architecture, these traits were combined into a Shading Rank metric that is indicative of a plant’s ability to cast shade. Genome wide association study (GWAS) revealed genetic loci underlying canopy architecture traits, out of which five loci were substantially contributing to shading potential. Subsequent haplotype analysis further explored allelic variation and identified seven haplotypes associated with increased shading. Identification of traits contributing to shading capacity and underlying allelic variation presented in this study will serve future genomic assisted breeding programmes. The investigated diversity panel, including widely grown varieties, shows that there is big potential and genetic resources for improvement of elite breeding lines. Implementing increased shading in rice breeding will make its farming less dependent on herbicides and contribute towards more environmentally sustainable agriculture. One sentence summary Through screening a rice diversity panel for variation in shoot architecture, we identified traits corresponding to plant shading potential and their genetic constituents

    A suberized exodermis is required for tomato drought tolerance.

    Get PDF
    Plant roots integrate environmental signals with development using exquisite spatiotemporal control. This is apparent in the deposition of suberin, an apoplastic diffusion barrier, which regulates flow of water, solutes and gases, and is environmentally plastic. Suberin is considered a hallmark of endodermal differentiation but is absent in the tomato endodermis. Instead, suberin is present in the exodermis, a cell type that is absent in the model organism Arabidopsis thaliana. Here we demonstrate that the suberin regulatory network has the same parts driving suberin production in the tomato exodermis and the Arabidopsis endodermis. Despite this co-option of network components, the network has undergone rewiring to drive distinct spatial expression and with distinct contributions of specific genes. Functional genetic analyses of the tomato MYB92 transcription factor and ASFT enzyme demonstrate the importance of exodermal suberin for a plant water-deficit response and that the exodermal barrier serves an equivalent function to that of the endodermis and can act in its place

    ErÀmaalakia ja -tutkimusta 10 vuotta - entÀ sitten?

    No full text

    Outdoor recreation in the Nordic and Baltic countries

    No full text

    Intergroup conflict in wilderness: balancing opportunities for expereince with preservation responsibility

    No full text

    Luontomatkailu tukee muitakin elinkeinoja

    No full text
    • 

    corecore