5,366 research outputs found

    Manipulating the torsion of molecules by strong laser pulses

    Full text link
    A proof-of-principle experiment is reported, where torsional motion of a molecule, consisting of a pair of phenyl rings, is induced by strong laser pulses. A nanosecond laser pulse spatially aligns the carbon-carbon bond axis, connecting the two phenyl rings, allowing a perpendicularly polarized, intense femtosecond pulse to initiate torsional motion accompanied by an overall rotation about the fixed axis. The induced motion is monitored by femtosecond time-resolved Coulomb explosion imaging. Our theoretical analysis accounts for and generalizes the experimental findings.Comment: 4 pages, 4 figures, submitted to PRL; Major revision of the presentation of the material; Correction of ion labels in Fig. 2(a

    Neural mechanisms of resistance to peer influence in early adolescence

    Get PDF
    During the shift from a parent-dependent child to a fully autonomous adult, peers take on a significant role in shaping the adolescent’s behaviour. Peer-derived influences are not always positive, however. Here we explore neural correlates of inter-individual differences in the probability of resisting peer influence in early adolescence. Using functional magnetic-resonance imaging (fMRI), we found striking differences between 10-year old children with high and low resistance to peer influence in their brain activity during observation of angry hand-movements and angry facial expressions: compared with subjects with low resistance to peer influence, individuals with high resistance showed a highly coordinated brain activity in neural systems underlying perception of action and decision making. These findings suggest that the probability of resisting peer influence depends on neural interactions during observation of emotion-laden actions

    In vitro Release of Eosinophil Proteins in Allergic and Atopic Dermatitis Patients

    Get PDF
    To investigate whether eosinophils are stimulated in vivo or have acquired an increased susceptibility to stimuli from the coagulation cascade, the release of eosinophil proteins was compared for three groups of donors with different levels of serum IgE. (1) with atopic dermatitis (s-IgE > 5000 IU/ml, n = 11); (2) with inhalant allergy (200 < s-IgE < 2 000 IU/ml, n = 10); and (3) non-allergic (s- IgE < 100 IU/ml, n = 10). The levels of eosinophil cationic protein and eosinophil protein X (ECP, EPX) were determined in serum (clotting time = 2.0 h) and plasma. Serum and plasma ECP in normal donors demonstrated large intra-personal variations (C.V. 50–80%), but serum-ECP (mean 8.1 ng/ml) was clearly distinguishable from plasma ECP (mean 1.0 ng/ml) by a factor of 8 (range: 5.6–11.6). The ECP released during clotting was markedly increased in the atopic dermatitis group (serum:plasma ratio 13.5, p < 0.003) compared with the other groups (6.7 and 5.6). EPX, having a higher plasma level, demonstrated a less pronounced release (serum: plasma ratios 2.0, 1.7 and 1.4), with no statistical difference between donor groups. Considering all donors together the levels of ECP and EPX in plasma and in serum were correlated to the number of eosinophils (coefficients of correlation 0.54-0.58, p < 0.002)

    Expression of transforming growth factor beta (TGF beta) receptors and expression of TGF beta 1, TGF beta 2 and TGF beta 3 in human small cell lung cancer cell lines.

    Get PDF
    A panel of 21 small cell lung cancer cell (SCLC) lines were examined for the presence of Transforming growth factor beta receptors (TGF beta-r) and the expression of TGF beta mRNAs. By the radioreceptor assay we found high affinity receptors to be expressed in six cell lines. scatchard analysis of the binding data demonstrated that the cells bound between 4.5 and 27.5 fmol mg-1 protein with a KD ranging from 16 to 40 pM. TGF beta 1 binding to the receptors was confirmed by cross-linking TGF beta 1 to the TGF beta-r. Three classes of TGF beta-r were demonstrated, type I and type II receptors with M(r) = 65,000 and 90,000 and the betaglycan (type III) with M(r) = 280,000. Northern blotting showed expression of TGF beta 1 mRNA in ten, TGF beta 2 mRNA in two and TGF beta 3 mRNA in seven cell lines. Our results provide, for the first time, evidence that a large proportion of a broad panel of SCLC cell lines express TGF beta-receptors and also produce TGF beta mRNAs

    Growth suppression by transforming growth factor beta 1 of human small-cell lung cancer cell lines is associated with expression of the type II receptor.

    Get PDF
    Nine human small-cell lung cancer cell lines were treated with transforming growth factor beta 1 (TGF-beta 1). Seven of the cell lines expressed receptors for transforming growth factor beta (TGF-beta-r) in different combinations between the three human subtypes I, II and III, and two were receptor negative. Growth suppression was induced by TGF-beta 1 exclusively in the five cell lines expressing the type II receptor. For the first time growth suppression by TGF-beta 1 of a cell line expressing the type II receptor without coexpression of the type I receptor is reported. No effect on growth was observed in two cell lines expressing only type III receptor and in TGF-beta-r negative cell lines. In two cell lines expressing all three receptor types, growth suppression was accompanied by morphological changes. To evaluate the possible involvement of the retinoblastoma protein (pRb) in mediating the growth-suppressive effect of TGF-beta 1, the expression of functional pRb, as characterised by nuclear localisation, was examined by immunocytochemistry. Nuclear association of pRb was only seen in two of the five TGF-beta 1-responsive cell lines. These results indicate that in SCLC pRb is not required for mediation of TGF-beta 1-induced growth suppression

    Sustainable manure management in the Baltic Sea Region

    Get PDF

    Differential atom interferometry beyond the standard quantum limit

    Full text link
    We analyze methods to go beyond the standard quantum limit for a class of atomic interferometers, where the quantity of interest is the difference of phase shifts obtained by two independent atomic ensembles. An example is given by an atomic Sagnac interferometer, where for two ensembles propagating in opposite directions in the interferometer this phase difference encodes the angular velocity of the experimental setup. We discuss methods of squeezing separately or jointly observables of the two atomic ensembles, and compare in detail advantages and drawbacks of such schemes. In particular we show that the method of joint squeezing may improve the variance by up to a factor of 2. We take into account fluctuations of the number of atoms in both the preparation and the measurement stage, and obtain bounds on the difference of the numbers of atoms in the two ensembles, as well as on the detection efficiency, which have to be fulfilled in order to surpass the standard quantum limit. Under realistic conditions, the performance of both schemes can be improved significantly by reading out the phase difference via a quantum non-demolition (QND) measurement. Finally, we discuss a scheme using macroscopically entangled ensembles.Comment: 10 pages, 5 figures; eq. (3) corrected and other minor change

    Spin squeezing via quantum feedback

    Get PDF
    We propose a quantum feedback scheme for producing deterministically reproducible spin squeezing. The results of a continuous nondemolition atom number measurement are fed back to control the quantum state of the sample. For large samples and strong cavity coupling, the squeezing parameter minimum scales inversely with atom number, approaching the Heisenberg limit. Furthermore, ceasing the measurement and feedback when this minimum has been reached will leave the sample in the maximally squeezed spin state.Comment: 4 pages, 3 figures, revtex
    • …
    corecore