501 research outputs found

    On the linearization of the generalized Ermakov systems

    Full text link
    A linearization procedure is proposed for Ermakov systems with frequency depending on dynamic variables. The procedure applies to a wide class of generalized Ermakov systems which are linearizable in a manner similar to that applicable to usual Ermakov systems. The Kepler--Ermakov systems belong into this category but others, more generic, systems are also included

    Unitary relations in time-dependent harmonic oscillators

    Get PDF
    For a harmonic oscillator with time-dependent (positive) mass and frequency, an unitary operator is shown to transform the quantum states of the system to those of a harmonic oscillator system of unit mass and time-dependent frequency, as well as operators. For a driven harmonic oscillator, it is also shown that, there are unitary transformations which give the driven system from the system of same mass and frequency without driving force. The transformation for a driven oscillator depends on the solution of classical equation of motion of the driven system. These transformations, thus, give a simple way of finding exact wave functions of a driven harmonic oscillator system, provided the quantum states of the corresponding system of unit mass are given.Comment: Submitted to J. Phys.

    Generalizing the autonomous Kepler Ermakov system in a Riemannian space

    Full text link
    We generalize the two dimensional autonomous Hamiltonian Kepler Ermakov dynamical system to three dimensions using the sl(2,R) invariance of Noether symmetries and determine all three dimensional autonomous Hamiltonian Kepler Ermakov dynamical systems which are Liouville integrable via Noether symmetries. Subsequently we generalize the autonomous Kepler Ermakov system in a Riemannian space which admits a gradient homothetic vector by the requirements (a) that it admits a first integral (the Riemannian Ermakov invariant) and (b) it has sl(2,R) invariance. We consider both the non-Hamiltonian and the Hamiltonian systems. In each case we compute the Riemannian Ermakov invariant and the equations defining the dynamical system. We apply the results in General Relativity and determine the autonomous Hamiltonian Riemannian Kepler Ermakov system in the spatially flat Friedman Robertson Walker spacetime. We consider a locally rotational symmetric (LRS) spacetime of class A and discuss two cosmological models. The first cosmological model consists of a scalar field with exponential potential and a perfect fluid with a stiff equation of state. The second cosmological model is the f(R) modified gravity model of {\Lambda}_{bc}CDM. It is shown that in both applications the gravitational field equations reduce to those of the generalized autonomous Riemannian Kepler Ermakov dynamical system which is Liouville integrable via Noether integrals.Comment: Reference [25] update, 21 page

    Invariant Measures and Convergence for Cellular Automaton 184 and Related Processes

    Full text link
    For a class of one-dimensional cellular automata, we review and complete the characterization of the invariant measures (in particular, all invariant phase separation measures), the rate of convergence to equilibrium, and the derivation of the hydrodynamic limit. The most widely known representatives of this class of automata are: Automaton 184 from the classification of S. Wolfram, an annihilating particle system and a surface growth model.Comment: 18 page

    Symmetry, singularities and integrability in complex dynamics III: approximate symmetries and invariants

    Full text link
    The different natures of approximate symmetries and their corresponding first integrals/invariants are delineated in the contexts of both Lie symmetries of ordinary differential equations and Noether symmetries of the Action Integral. Particular note is taken of the effect of taking higher orders of the perturbation parameter. Approximate symmetries of approximate first integrals/invariants and the problems of calculating them using the Lie method are considered

    Novel approach to the study of quantum effects in the early universe

    Full text link
    We develop a theoretical frame for the study of classical and quantum gravitational waves based on the properties of a nonlinear ordinary differential equation for a function σ(η)\sigma(\eta) of the conformal time η\eta, called the auxiliary field equation. At the classical level, σ(η)\sigma(\eta) can be expressed by means of two independent solutions of the ''master equation'' to which the perturbed Einstein equations for the gravitational waves can be reduced. At the quantum level, all the significant physical quantities can be formulated using Bogolubov transformations and the operator quadratic Hamiltonian corresponding to the classical version of a damped parametrically excited oscillator where the varying mass is replaced by the square cosmological scale factor a2(η)a^{2}(\eta). A quantum approach to the generation of gravitational waves is proposed on the grounds of the previous η−\eta-dependent Hamiltonian. An estimate in terms of σ(η)\sigma(\eta) and a(η)a(\eta) of the destruction of quantum coherence due to the gravitational evolution and an exact expression for the phase of a gravitational wave corresponding to any value of η\eta are also obtained. We conclude by discussing a few applications to quasi-de Sitter and standard de Sitter scenarios.Comment: 20 pages, to appear on PRD. Already published background material has been either settled up in a more compact form or eliminate

    Generalized Courant-Snyder Theory for Charged-Particle Dynamics in General Focusing Lattices

    Get PDF
    The Courant-Snyder (CS) theory for one degree of freedom is generalized to the case of coupled transverse dynamics in general linear focusing lattices with quadrupole, skew-quadrupole, dipole, and solenoidal components, as well as torsion of the fiducial orbit and variation of beam energy. The envelope function is generalized into an envelope matrix, and the phase advance is generalized into a 4D sympletic rotation. The envelope equation, the transfer matrix, and the CS invariant of the original CS theory all have their counterparts, with remarkably similar expressions, in the generalized theory.open7
    • 

    corecore