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The Courant-Snyder (CS) theory for one degree of freedom is generalized to the case of coupled

transverse dynamics in general linear focusing lattices with quadrupole, skew-quadrupole, dipole, and

solenoidal components, as well as torsion of the fiducial orbit and variation of beam energy. The envelope

function is generalized into an envelope matrix, and the phase advance is generalized into a 4D sympletic

rotation. The envelope equation, the transfer matrix, and the CS invariant of the original CS theory all have

their counterparts, with remarkably similar expressions, in the generalized theory.
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For a charged particle in an uncoupled quadrupole
focusing lattice, the classical Courant-Snyder (CS) theory
[1] gives a complete description of its dynamics. Because
the dynamics in the x direction and y direction are
decoupled, the equations of motion in both directions are
given by

€qþ �qðtÞq ¼ 0; (1)

where q represents either of the transverse coordinates x or
y, and �qðtÞ is the time-dependent linear focusing strength.

For a quadrupole lattice, �xðtÞ ¼ ��yðtÞ. The CS theory

states that the solution of Eq. (1) can be expressed as
a time-dependent symplectic map applied to the initial
phase-space coordinates, i.e., ðq; _qÞT ¼ M1ðtÞðq0; _q0ÞT ,

M1ðtÞ¼
ffiffiffiffiffi

�
�0

q

½cos�þ�0 sin�� ffiffiffiffiffiffiffiffiffiffi

��0

p
sin�

�1þ��0
ffiffiffiffiffiffiffi

��0

p sin�þ �0��
ffiffiffiffiffiffiffi

��0

p cos�
ffiffiffiffiffi

�0

�

q

½cos���sin��

0

B

B

@

1

C

C

A

;

(2)

where the superscript ‘‘T’’ denotes the transpose operation,
and �ðtÞ, �ðtÞ, and �ðtÞ are time-dependent functions
defined in terms of the envelope function wðtÞ by

�ðtÞ � w2ðtÞ; �ðtÞ � �w _w; �ðtÞ �
Z t

0

dt

�ðtÞ : (3)

The envelope function wðtÞ is determined by the nonlinear
envelope equation

€wþ �qðtÞw ¼ w�3: (4)

In Eq. (2) q0 ¼ qðt ¼ 0Þ, _q0 ¼ _qðt ¼ 0Þ, �0 ¼ �ðt ¼ 0Þ,
and �0 ¼ �ðt ¼ 0Þ are initial conditions. The transfer
matrix M1ðtÞ can be decomposed as [2]

M1ðtÞ ¼
w 0

_w 1
w

 !

cos� sin�

� sin� cos�

 !

w�1
0 0

� _w0 w0

 !

; (5)

from which it is clear that the physical meaning of � is the
phase advance, and��1¼w�2 is the rate of phase advance.
The Courant-Snyder invariant [1,3] is given by

ICS ¼ q2

w2
þ ðw _q� _wqÞ2 ¼ ðq; _qÞ � �

� �

� �

q
_q

� �

; (6)

�ðtÞ � w�2 þ _w2: (7)

The functions�ðtÞ,�ðtÞ, and�ðtÞ defined byEqs. (3) and (7)
are known as the Twiss parameters. These main results of
the CS theory constitute a parametrization of the symplectic
transfer map M1ðtÞ for a standard uncoupled quadrupole
lattice, and provide the foundation for accelerator and
beam physics. Mathematically, there are different schemes
to parametrize a time-dependent symplectic map. Among
these, the CS parametrization is unique because it describes
the physics of charged particle dynamics. The main com-
ponents of the CS theory, i.e., the phase advance, the enve-
lope equation, the transfer matrix, and the CS invariant, are
of considerable importance to beam physics. The envelope
function describes the transverse dimensions in configura-
tion space while the CS invariant defines the emittance in
phase space. This theoretical framework also makes it
possible to investigate collective effects associated with
high-intensity beams. For instance, it is used to construct
the Kapchinskij-Vladimirskij distribution [4–6].
However, the CS theory can only be applied to the ideal

case of uncoupled quadrupole focusing lattices. In realistic
accelerators, there also exist bending magnets, torsion of
the design orbit (fiducial orbit), and skew-quadrupole com-
ponents introduced intentionally or by misalignment. In
certain applications, such as the NDCX-II experiment [7],
solenoidal magnets are also used. When these additional
linear components are included, the transverse dynamics
are coupled, and the dynamics of a charged particle relative
to the fiducial orbit are governed by a general time-
dependent Hamiltonian [8]
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H ¼ 1

2
zTAz; A ¼ �ðtÞ RðtÞ

RðtÞT m�1ðtÞ

 !

: (8)

Here, z ¼ ðx; y; px; pyÞT are the transverse phase-space

coordinates, and �ðtÞ, RðtÞ, and m�1ðtÞ are time-dependent
2� 2 matrices. The matrices �ðtÞ and m�1ðtÞ are also
symmetric. The skew-quadrupole and dipole components
are included in the off-diagonal terms of �ðtÞ, and the
solenoidal component and the torsion of the fiducial orbit
are included in RðtÞ. There are several different methods
to include the effect of torsion. A summary is given by
Hoffstaetter [9]. The variation of beam energy along the
fiducial orbit is reflected in the mass matrix m�1ðtÞ. For
complete generality, we further allow m�1ðtÞ to be any real
symmetric matrix. The transfer matrix MðtÞ corresponding
to H is a time-dependent 4� 4 symplectic matrix, which
has ten time-dependent parameters and admits many
different schemes for parametrization. Teng and Edwards
[10–12] first derived a set of parametrization schemes for
MðtÞ, some of which have been adopted in lattice design
and particle tracking codes, such as the MAD code [13].
A class of different parametrizations has also been devel-
oped by Dattoli et al. [14]. However, these parametrization
schemes are rather mathematical and fail to connect with
important physical parameters of the beam, in contrast to
the original CS theory. For example, they cannot be used
effectively to describe the instability properties of the
coupled dynamics, and are not directly related to beam
envelopes and emittance. In order to describe beam enve-
lopes for coupled dynamics, Ripken [15,16] developed a
method without using these parametrization schemes. In
short, the elegant and much-needed connection with the
physics of beam dynamics in the original CS theory for one
degree of freedom is lost in these parametrization schemes.

Recently we have generalized the CS theory for
uncoupled dynamics to treat coupled dynamics induced
by a skew-quadrupole lattice [17–20]. However, this gen-
eralization is valid only for cases without torsion and
solenoidal components, i.e., cases with R ¼ 0 in Eq. (8).
For cases with torsion and/or solenoidal components, R�0
and we had to perform a phase-space rotation first to
transform away the nonvanishing R, and then apply the
generalized CS theory. While this procedure worked tech-
nically, it does not fit into the framework of the CS theory.
This is because the first phase-space rotation is not con-
sistent with the CS theory, and the envelope matrix and
phase advance in the rotated frame lost their original mean-
ing and physical importance. In this Letter, we complete
the development of the generalized CS theory by allowing
the focusing lattice to assume the most general form in
Eq. (8), including bending magnets, torsion of the design
orbit, and solenoidal magnets, in addition to quadrupole
and skew-quadrupole components. In this generalized
theory, the physics components of the original CS theory,
i.e., the phase advance, the envelope equation, the transfer

matrix, and the CS invariant are all generalized to the
2D coupled case with identical structure.
We will use a time-dependent symplectic transformation

technique [17,20,21]. A generalized envelope equation in
2� 2 matrix form for the most general form of coupled
dynamics is developed [see Eq. (16)]. In the original CS
theory, the 1D envelope equation (4) plays a central role. It is
also an important equation in other branches of physics, and
has been discovered or rediscovered many times [22–26].
In quantum physics, it is also known as the Ermakov-Milne-
Pinney equation [22–24], which has been utilized to study
nonadiabatic Berry phases [27] in 1D time-dependent quan-
tum systems [28,29]. A brief account of the history of the 1D
envelope equation can be found in Ref. [3]. The general-
ization of the 1D envelope equation to higher dimensions
for the most general Hamiltonian is also expected to have
many possible applications in areas other than beam phys-
ics. In addition, the 1D CS invariant given by Eq. (6), also
known as the Lewis invariant [25,26] in quantum physics, is
generalized to higher dimension in Eq. (22).
The 1D phase advance concept is generalized to a

time-dependent matrix P, which belongs to the symplectic
rotation group Spð4Þ⋂SOð4Þ¼Uð2Þ. Here, Spð4Þ, SOð4Þ,
and Uð2Þ denote the groups of 4� 4 symplectic matrices,
4� 4 rotation matrices, and 2� 2 unitary matrices,
respectively.
The generalized decomposition for the symplectic map

MðtÞ is given by Eq. (21), which has exactly the same
structure as the original 1D CS theory given by Eq. (5).
In addition to its aesthetic appearance, the generalized CS
theory provides an effective tool to describe the beam
physics determined by the most general Hamiltonian. The
2� 2 envelope matrix w defines the transverse dimension
of the beam, and the generalized CS invariant defines the
emittance. We will also show that the stability properties of
a charged particle are completely determined by envelope
matrix and the generalized phase advance PðtÞ, which is a
time-dependent curve in Spð4Þ⋂ SOð4Þ ¼ Uð2Þ.
The most critical part of the generalized theory is the

decomposition of the time-dependent symplectic coordi-
nate transformation G given by Eq. (20). The factorization
of G as a product PS is closely related to the Iwasawa
decomposition for a semisimple Lie group [30], which has
played an important role in phase-space optics [31] and
phase-space quantum mechanics [32]. However, the unique
feature of the theory developed here is that the factorization
is provided from the viewpoint of dynamics and self-
consistently constructed from the generalized envelope
equation. It is a pleasant surprise to find the deep connec-
tion between the original CS theory for charged particle
dynamics [1] and the Iwasawa decomposition for Lie
groups [30], two theoretical formalisms developed concur-
rently. This realization also demonstrates that beam dynam-
ics, phase-space optics, and quantum dynamics have a
similar dynamical structure at the fundamental level.
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For the present application to beam transverse dynamics,
there are two degrees of freedom. But the theory developed
is valid for any degree of freedom. For a system with n
degrees of freedom, the time-dependent matrix AðtÞ spec-
ifying the Hamiltonian in Eq. (8) will be 2n� 2n, the
envelope matrix will be n� n, and the phase advance
will belong to Spð2nÞ⋂ SOð2nÞ ¼ UðnÞ.

We now present the detailed derivation of the generalized
CS theory.We start by quickly reviewing the time-dependent
symplectic transformation technique developed by Leach
[21]. For a Hamiltonian given by H1 ¼ ð1=2ÞzT1A1ðtÞz1,
we seek a time-dependent linear symplectic coordinate
transformation z2 ¼ SðtÞz1 such that in the z2 coordinates,
the dynamics are governed by H2 ¼ ð1=2ÞzT2A2ðtÞz2. Here
H1 is specified by a 2n� 2n symmetric matrix A1ðtÞ, and
H2 is a targeted Hamiltonian specified by a desired 2n� 2n
symmetric matrixA2ðtÞ. The required symplecticmatrix SðtÞ
must satisfy the matrix equation [21]

_S ¼ JA2S� SJA1; (9)

where J ¼ ð 0
�I

I
0Þ is the 2n� 2n unit symplectic matrix.

The derivation of Eq. (9) can be found in Refs. [17,18,21],
and its geometric interpretation is given in Ref. [20].

We now apply this technique to the Hamiltonian given
by Eq. (8). We proceed in two steps. First, we seek a
coordinate transformation �z ¼ Sz such that, in the �z coor-
dinates, the Hamiltonian assumes the form

�H ¼ 1

2
�zT �A �z; �A ¼ �ðtÞ 0

0 �ðtÞ

 !

; (10)

where �ðtÞ is a 2� 2 matrix to be determined. In terms of
2� 2 blocks, S ¼ ðS1S3 S2

S4
Þ, and Eq. (9) splits into four matrix

equations. Including �ðtÞ, we have five 2� 2 matrices to
be determined. Based on the analogy with Eq. (5), we
define S2 � 0. We define w � S4 because it will be clear
later that S4 is the envelope matrix. Equation (9) becomes

_S1 ¼ �S3 � S1R
T; (11)

S1 ¼ �wm; (12)

_S3 ¼ ��S1 � S3R
T þ w�; (13)

S3 ¼ � _wmþ wRm: (14)

Because Eqs. (11)–(14) describe a curve in Spð4Þ, they
are consistent with the symplectic condition S1w

T ¼ I,
which implies

� ¼ ðwmwTÞ�1: (15)

Then, from Eqs. (13) and (14) we immediately obtain the
following matrix differential equation for the envelope
matrix w,

d

dt

�

dw

dt
m� wRm

�

þ dw

dt
mRT þ wð�� RmRTÞ

� ðwTwmwTÞ�1 ¼ 0: (16)

This is the generalized envelope equation. It generalizes
the 1D envelope equation (4) (or Ermakov-Milne-Pinney
equation [22–24]), as well as the previous matrix envelope
equation for cases with only quadrupole and skew-
quadrupole magnets (R ¼ 0) [17–20]. The envelope equa-
tion developed here [Eq. (16)] applies to the most general
Hamiltonian with arbitrary R, and it includes Eq. (59) of
Ref. [17] as a special case. By comparison, Eq. (16) is much
more general than Eq. (59) of Ref. [17]. For its application
in quantum mechanics, both of the envelope equations can
be viewed as a generalized Ermakov-Milne-Pinney equa-
tion. However, Eq. (16) obviously is more general and has
more applications. For example, it is applicable to quantum
systems in a time-dependent magnetic field. For n degrees
of freedom, the envelope matrix w will be n� n, and the
generalized envelope equation has the same format as
Eq. (16). Once w is solved for from the envelope equation,
we can determine S1 from Eq. (12) and S3 from Eq. (14).
In terms of the envelope matrix w, the first symplectic
transformation S and its inverse are given by

S ¼ w�T 0

ðwR� _wÞm w

 !

;

S�1 ¼ wT 0

ðw�1 _w� RÞmwT w�1

 !

:

(17)

The second step is to use another coordinate transforma-
tion ��z ¼ PðtÞ�z to transform �H into a vanishing Hamiltonian
��H � 0 for all time, thereby rendering the dynamics trivial
in the new coordinates. In this case, the determining equa-
tion for the transformation PðtÞ is

_P ¼ �PJ �A ¼ P
0 ��

� 0

 !

: (18)

It is straightforward to verify that �J �A 2 spð4Þ⋂ soð4Þ,
where spð4Þ and soð4Þ are the Lie algebras of Spð4Þ and
SOð4Þ, respectively. Thus PðtÞ is a curve in the group of 4D
symplectic rotations, i.e., PðtÞ 2 Spð4Þ⋂ SOð4Þ ¼ Uð2Þ,
provided the initial condition of PðtÞ is chosen such that
Pð0Þ 2 Spð4Þ⋂ SOð4Þ ¼ Uð2Þ. We call PðtÞ the general-
ized phase advance, an appropriate title in light of the fact
that PðtÞ is a symplectic rotation. The Lie algebra element
(infinitesimal generator) �J �A ¼ ð0� ��

0 Þ is therefore the

phase advance rate, and it is determined by the envelope
matrix through Eq. (15). Since Spð4Þ⋂ SOð4Þ ¼ Uð2Þ, P
and its inverse must have the form of

P ¼ P1 P2

�P2 P1

 !

; P�1 ¼ PT ¼ PT
1 �PT

2

PT
2 PT

1

 !

:

(19)
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Combining the two symplectic coordinate transforma-
tions, we obtain the transformation

��z ¼ GðtÞz ¼ PðtÞSðtÞz: (20)

As mentioned above, the factorization of G as a product of
a symplectic rotation (unitary) matrix P and a lower-
triangular matrix S of the specified form is closely related
to the Iwasawa decomposition for a semisimple Lie group
[30]. Given that we have derived the factorization from
purely dynamical considerations, the theory developed
here can be viewed as a dynamical interpretation of the
factorization for the symplectic group.

Because ��H � 0, ��z ¼ const. Therefore, the symplectic
matrix specifying the map between z0 and z ¼ MðtÞz0 is
MðtÞ ¼ S�1P�1P0S0

¼ wT 0

ðw�1 _w�RÞmwT w�1

 !

PT
w�T 0

ðwR� _wÞm w

 !

0

;

(21)

where subscript ‘‘0’’ denotes initial conditions at t ¼ 0,
and P0 is taken to be I without loss of generality. This
expression for MðtÞ generalizes the decomposition of the
symplectic map for the original 1D CS theory given by
Eq. (5). Specifically, the 2D rotation matrix, which is also
symplectic, in Eq. (5) is generalized into a 4D symplectic
rotation PT . The phase advance P is generated by the
infinitesimal generator determined by the envelope matrix
through � ¼ ðwmwTÞ�1, just as in the original 1D CS
theory where the infinitesimal generator of the phase
advance is w�2 for a scalar envelope w. The first and
the third matrices in Eq. (5) obviously have the same
construction as their counterparts in Eq. (21). It is impor-
tant to understand the physical meaning of the decom-
position in Eqs. (21) and (5). The first matrix from the
right is a matching transformation at t ¼ 0 of the initial
conditions to an equivalent, homogeneously focusing
system, where the external forces act constantly on the
beam. The second matrix from the right is a transforma-
tion along the time axis in this homogeneously focusing
system, with the phase advance playing the role of a
timelike evolution parameter. And the third matrix from
the right is a back transformation to the original coordi-
nate system at t > 0.

Given the lattice function AðtÞ, we need to solve the
envelope equation (16) and the phase advance equation
(18) to construct MðtÞ according to Eq. (21). The initial
conditions for w and _w can be arbitrary except that they
have to satisfy the symplectic condition wST3 ¼ S3w

T ,

which is a single constraint since w is a 2� 2 matrix.
The envelope equation (16) admits a 1D gauge freedom
as well. For any constant matrix c 2 Oð2Þ, we can show
by straightforward calculation that if w is a solution of
Eq. (16), then cw is also a solution. However, PðtÞ andMðtÞ
are independent of this gauge. The number of initial

conditions for Eq. (16) is eight, and the dimension of
PðtÞ as the Uð2Þ group is four. Subtracting the one sym-
plectic constraint on the initial conditions and the one
gauge freedom, the total number of independent parame-
ters for MðtÞ is ten, as expected.
Because ��z ¼ const,

I� ¼ zTSTPT�PSz (22)

is a constant of motion for any constant 4� 4 positive
definite matrix �. This expression generalizes the CS
invariant [1] (or Lewis invariant [25,26]) for one degree
of freedom in Eq. (6). In particular, we can define I�, with �
being the unit matrix, to be the special invariant corre-
sponding to the original CS invariant. In this case, the
phase advance P in Eq. (22) drops out, and

ICS � zTSTSz ¼ zT
� �

�T �

 !

z;

where �, �, and � are the generalized Twiss parameters
defined by

� � wTS3; � � wTw; � � ST3S3 þ w�1w�T:

It is straightforward to verify that as time-dependent 2� 2
matrices, �, �, and � satisfy

�� ¼ I þ �2; (23)

which is a familiar relationship in the original CS theory
between the scalar Twiss parameters defined by Eqs. (3)
and (7). Use has been made of the symplectic condition
wST3 ¼ S3w

T in obtaining Eq. (23).

The envelope matrix w and the invariant I� define the

beam dimensions and emittance for both low intensity
beams and high intensity beams with strong space-charge
potential. Investigation of these properties will be reported
on in future publications. Here we demonstrate how to use
the generalized theory to study the instability properties of
the transverse dynamics governed by the HamiltonianHðtÞ
specified in Eq. (8) for a general periodic lattice. After
solving for a matched envelope matrix, the one-turn map
McðtÞ is given by

McðtÞ ¼ S�1ðtÞPT
c ðtÞSðtÞ; (24)

where PT
c ðtÞ is the one-turn phase advance transposed.

Equation (24) states that McðtÞ is similar to PT
c ðtÞ, and

thus we reach the conclusion that the stability properties
of the dynamics are determined by the one-turn phase
advance PT

c ðtÞ. This significantly simplifies the stability
analysis and showcases the physical relevance of the gen-
eralized CS parametrization scheme developed here. Since
PT
c ðtÞ is a symplectic rotation, we obtain the following

stability criterion: a sufficient condition for the general

PRL 111, 104801 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

6 SEPTEMBER 2013

104801-4



transverse dynamics to be stable is that the envelope equa-
tion has a matched solution.

This research was supported by the U.S. Department
of Energy (Contracts No. DE-AC02-09CH11466 and
No. DE-AC02-07CH11359).
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