80 research outputs found

    An in vitro collagen perfusion wound biofilm model; with applications for antimicrobial studies and microbial metabolomics

    Get PDF
    BackgroundThe majority of in vitro studies of medically relevant biofilms involve the development of biofilm on an inanimate solid surface. However, infection in vivo consists of biofilm growth on, or suspended within, the semi-solid matrix of the tissue, whereby current models do not effectively simulate the nature of the in vivo environment. This paper describes development of an in vitro method for culturing wound associated microorganisms in a system that combines a semi-solid collagen gel matrix with continuous flow of simulated wound fluid. This enables culture of wound associated reproducible steady state biofilms under conditions that more closely simulate the dynamic wound environment. To demonstrate the use of this model the antimicrobial kinetics of ceftazidime, against both mature and developing Pseudomonas aeruginosa biofilms, was assessed. In addition, we have shown the potential application of this model system for investigating microbial metabolomics by employing selected ion flow tube mass spectrometry (SIFT-MS) to monitor ammonia and hydrogen cyanide production by Pseudomonas aeruginosa biofilms in real-time. ResultsThe collagen wound biofilm model facilitates growth of steady-state reproducible Pseudomonas aeruginosa biofilms under wound like conditions. A maximum biofilm density of 1010 cfu slide-1 was achieved by 30 hours of continuous culture and maintained throughout the remainder of the experiment. Treatment with ceftazidime at a clinically relevant dose resulted in a 1.2 – 1.6 log reduction in biofilm density at 72 hours compared to untreated controls. Treatment resulted in loss of complex biofilm architecture and morphological changes to bacterial cells, visualised using confocal microscopy. When monitoring the biofilms using SIFT-MS, ammonia and hydrogen cyanide levels peaked at 12 hours at 2273 ppb (±826.4) and 138 ppb (±49.1) respectively and were detectable throughout experimentation. ConclusionsThe collagen wound biofilm model has been developed to facilitate growth of reproducible biofilms under wound-like conditions. We have successfully used this method to: (1) evaluate antimicrobial efficacy and kinetics, clearly demonstrating the development of antimicrobial tolerance in biofilm cultures; (2) characterise volatile metabolite production by P. aeruginosa biofilms, demonstrating the potential use of this method in metabolomics studies

    Burn Injury Reduces Neutrophil Directional Migration Speed in Microfluidic Devices

    Get PDF
    Thermal injury triggers a fulminant inflammatory cascade that heralds shock, end-organ failure, and ultimately sepsis and death. Emerging evidence points to a critical role for the innate immune system, and several studies had documented concurrent impairment in neutrophil chemotaxis with these post-burn inflammatory changes. While a few studies suggest that a link between neutrophil motility and patient mortality might exist, so far, cumbersome assays have prohibited exploration of the prognostic and diagnostic significance of chemotaxis after burn injury. To address this need, we developed a microfluidic device that is simple to operate and allows for precise and robust measurements of chemotaxis speed and persistence characteristics at single-cell resolution. Using this assay, we established a reference set of migration speed values for neutrophils from healthy subjects. Comparisons with samples from burn patients revealed impaired directional migration speed starting as early as 24 hours after burn injury, reaching a minimum at 72–120 hours, correlated to the size of the burn injury and potentially serving as an early indicator for concurrent infections. Further characterization of neutrophil chemotaxis using this new assay may have important diagnostic implications not only for burn patients but also for patients afflicted by other diseases that compromise neutrophil functions

    Clinical practice: Coeliac disease

    Get PDF
    Coeliac disease (CD) is an immune-mediated systemic condition elicited by gluten and related prolamines in genetically predisposed individuals and characterised by gluten-induced symptoms and signs, specific antibodies, a specific human leukocyte antigen (HLA) type and enteropathy. The risk of coeliac disease is increased in first-degree relatives, certain syndromes including Down syndrome and autoimmune disorders. It is thought to occur in 1 in 100–200 individuals, but still only one in four cases is diagnosed. Small-bowel biopsy is no longer deemed necessary in a subgroup of patients, i.e. when all of the following are present: typical symptoms or signs, high titres of and transglutaminase antibodies, endomysial antibodies, and HLA-type DQ2 or DQ8. In all other cases, small-bowel biopsy remains mandatory for a correct diagnosis. Therapy consists of a strictly gluten-free diet. This should result in complete disappearance of symptoms and of serological markers. Adequate follow-up is considered essential. Conclusion: Although small-bowel biopsy may be omitted in a minority of patients, small-bowel biopsy is essential for a correct diagnosis of CD in all other cases. Diagnostic work-up should be completed before treatment with gluten-free diet instituted

    A novel antimicrobial lectin from Eugenia malaccensis that stimulates cutaneous healing in mice model

    Get PDF
    Objective The present work reports the purification and partial characterization of an antibacterial lectin (EmaL) obtained from Eugenia malaccensis seeds as well as the evaluation of its effect in the daily topical treatment of repairing process of cutaneous wounds in mice. Materials and methods The cutaneous wound was produced by the incision of the skin and use of lectin in the treatment of mice cutaneous wounds was evaluated. Surgical wounds were treated daily with a topical administration of EmaL and parameters such as edema, hyperemia, scab, granulation and scar tissues as well as contraction of wounds were analyzed. Results A novel lectin, with a molecular mass of 14 kDa, was isolated from E. malaccensis using affinity chromatography. The lectin (EmaL) agglutinated glutaraldehyde-treated rabbit and human erythrocytes; the lectin-induced rabbit erythrocyte agglutination was inhibited by glucose, casein, ovalbumin and fetuin. Also, Emal was very effective in the inhibition of bacterial growth, with the best inhibition results obtained for Staphylococcus aureus. Inflammatory signals such as edema and hyperemia were statistically less intense when EmaL was applied compared to the control. The histopathological analysis showed that the treated injured tissue presented reepithelialization (complete or partial) and areas of transition more evidenced than those of the control group, especially due to well organized pattern of collagen fibers presented in the granulation fibrous tissue. Conclusion Presented results are a preliminary indication of the pharmacological interest in using EmaL as antimicrobial agent and in the repairing process of cutaneous wounds.This paper was financially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), FACEPE and CAPES, Brazil. The authors are deeply grateful for the technical assistance of Maria Barbosa Reis da Silva and João Antonio Virgínio and Alfa/VALNATURA Project.info:eu-repo/semantics/publishedVersio
    corecore